FISH AND AMPHIBIANS

Britannica Illustrated Science Library

FISH AND AMPHIBIANS

Britannica Illustrated Science Library

Encyclopædia Britannica, Inc. Chicago = London = New Delhi = Paris = Seoul = Sydney = Taipei = Tokyo

Britannica Illustrated Science Library

© 2011 Editorial Sol 90

All rights reserved.

Idea and Concept of This Work: Editorial Sol 90

Project Management: Fabián Cassan

Photo Credits: Corbis, ESA, Getty Images, Graphic News, NASA, National Geographic, Science Photo Library

Illustrators: Guido Arroyo, Pablo Aschei, Gustavo J. Caironi, Hernán Cañellas, Leonardo César, José Luis Corsetti, Vanina Farías, Manrique Fernández Buente, Joana Garrido, Celina Hilbert, Jorge Ivanovich, Isidro López, Diego Martín, Jorge Martínez, Marco Menco, Marcelo Morán, Ala de Mosca, Diego Mourelos, Pablo Palastro, Eduardo Pérez, Javier Pérez, Ariel Piroyansky, Fernando Ramallo, Ariel Roldán, Marcel Socías, Néstor Taylor, Trebol Animation, Juan Venegas, Constanza Vicco, Coralia Vignau, Gustavo Yamin, 3DN, 3DOM studio

Composition and Pre-press Services: Editorial Sol 90 **Translation Services and Index:** Publication Services, Inc.

Portions © 2011 Encyclopædia Britannica, Inc.

Encyclopædia Britannica, Britannica, and the thistle logo are registered trademarks of Encyclopædia Britannica, Inc.

Britannica Illustrated Science Library Staff

Editorial

Michael Levy, *Executive Editor, Core Editorial* John Rafferty, *Associate Editor, Earth Sciences* William L. Hosch, *Associate Editor, Mathematics and Computers* Kara Rogers, *Associate Editor, Life Sciences* Rob Curley, *Senior Editor, Science and Technology* David Hayes, *Special Projects Editor*

Art and Composition

Steven N. Kapusta, *Director* Carol A. Gaines, *Composition Supervisor* Christine McCabe, *Senior Illustrator*

Media Acquisition Kathy Nakamura, *Manager*

Copy Department Sylvia Wallace, *Director* Julian Ronning, *Supervisor*

Information Management and Retrieval Sheila Vasich, *Information Architect*

Production Control Marilyn L. Barton

Manufacturing Kim Gerber, *Director*

About the pagination of this eBook

Due to the unique page numbering scheme of this book, the electronic pagination of the eBook does not match the pagination of the printed version. To navigate the text, please use the electronic Table of Contents that appears alongside the eBook or the Search function.

For citation purposes, use the page numbers that appear in the text.

Encyclopædia Britannica, Inc.

Jacob E. Safra, Chairman of the Board

Jorge Aguilar-Cauz, President

Michael Ross, Senior Vice President, Corporate Development

Dale H. Hoiberg, Senior Vice President and Editor

Marsha Mackenzie, Director of Production

International Standard Book Number (e-book set): 978-1-61535-493-1 International Standard Book Number (e-book volume): 978-1-61535-481-8 Britannica Illustrated Science Library: Fish and Amphibians 2011

www.britannica.com

Fish and Amphibians

Contents

VIETNAM

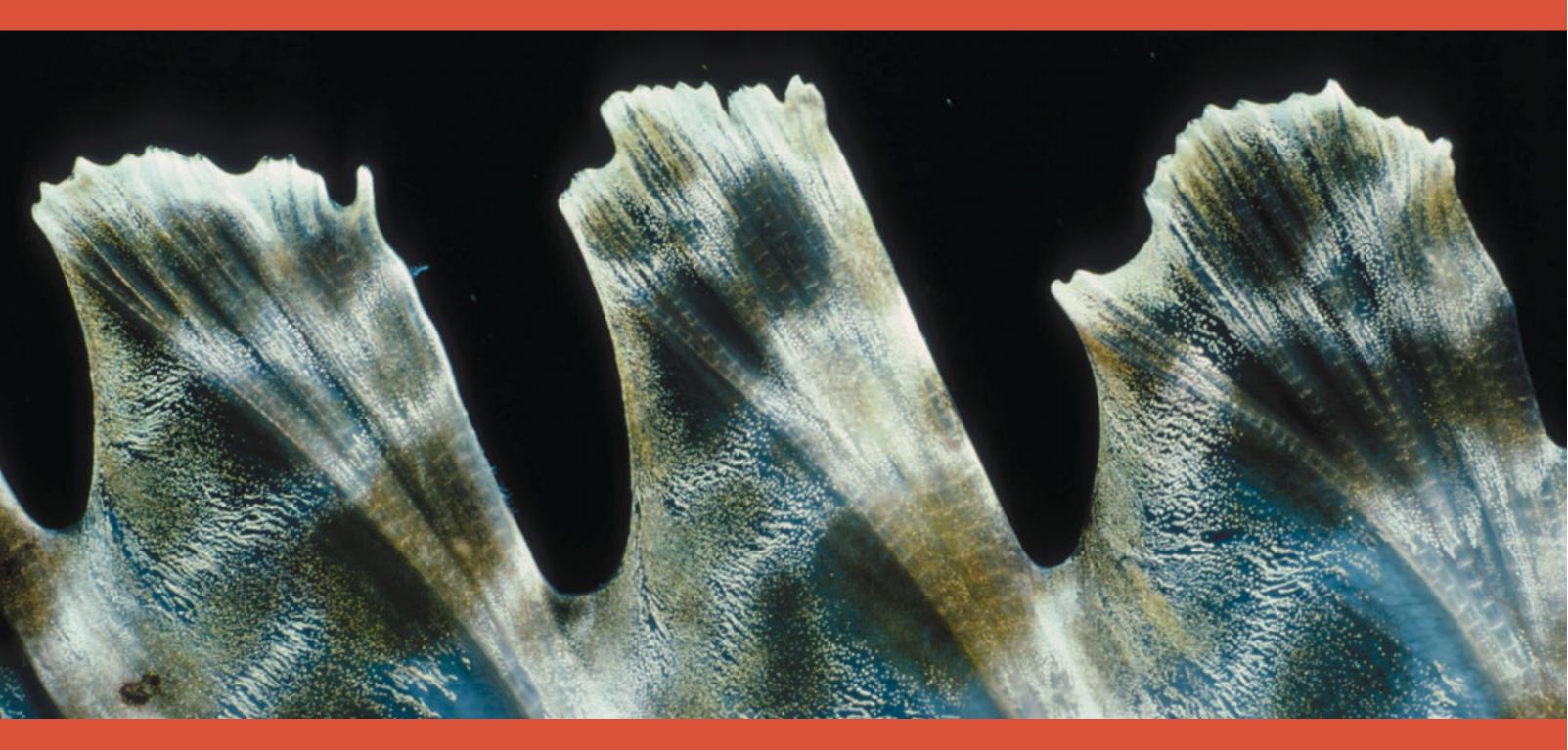
Along this country's nearly 200 miles (300 km) of coastline live great numbers of people who depend on fishing and coral reefs for their livelihood.

Water, the Source of Life

he life of marine creatures is fascinating and has always been closely linked to human life. This is so particularly because fishing has been the livelihood of islanders through the years. Yet for some time, in many areas of the world—such as Nha Trang Bay, on the south coast of Vietnam—this activity has

been in a state of crisis. In Nha Trang Bay the growth of outside investment in aquaculture has limited the economic opportunities of the local population, including fishing for squid and other species in the reefs with hook and line. In other cases, commercial fishing endangers the future of those who rely on traditional fishing methods to make a living. This is only one of the topics explored in this book, which also relates in detail many secrets of these vertebrates, which were among the first creatures with skeletons to appear on the Earth. Perhaps knowing more about their habits and modes of life may move us to care for them and protect them. They are at the mercy of variations in water conditions to a greater extent than humans.

umans have marveled for centuries at the fact that, after journeying across the ocean, salmon can find the river where they were born. Is this navigational ability related to the Earth's magnetic field, sense of smell, instinct, or something else that humans cannot even imagine? For those interested in statistics, in the Yukon River in Alaska and in Canada, certain tagged Chinook salmon covered nearly 2,000 miles (3,200 km) in 60 days. Upon entering the river, the salmon stop eating and utilize the fat they accumulated while in the ocean.


After laying their eggs, many of the females die. Most ocean fish seek shallow, nutrient-rich waters in which to lay their eggs. That is why coastal waters and estuaries are so important to the life cycle of many species. Another oddity of these animals is that they have adapted to living in a variety of aquatic habitats: rivers, lakes, estuaries, coral reefs, and the open sea. For this reason, they have developed various survival techniques to live in such a wide variety of places.

espite the fact that lunglike sacs evolved because of the difficulty of breathing with gills in water with low oxygen content, the development of these sacs was also the first step toward moving onto land. Some descendants of the first fish with fleshy, jointed fins, known as lobe-fin fishes, began to find terrestrial food sources and, with time, adapted more completely to life on the planet's surface. This evolutionary change—passing from an aquatic to a terrestrial medium—constituted a true revolution for the life-forms that existed up until then. The amphibians we will show you in this book that are living today are a tiny representation of all those that appeared during the Devonian Period, most of which became extinct during the Triassic Period.

mphibians, especially some frog species, have become true specialists in the art of mimicry. One of the most fascinating examples is the European tree frog, which changes color to regulate its body temperature. On warm, dry evenings the frog rests in sunny places, and its skin is pale. As its surroundings become cooler, the frog darkens to absorb heat. Although amphibians are masters of camouflage, which protects them from predators, at present they are the object of worldwide concern because of the dramatic decline in their populations. Turn the page, and you will discover much more about the abilities of fish and amphibians, extraordinary creatures that live right next to us.

General Characteristics

CROCODILE FISH FIN This fish, which lives in waters with abundant cora reefs, can grow up to 21 inches (54 cm) long.

ish were the first vertebrates with bony skeletons to appear on the Earth. They doubtless form the most numerous group of vertebrates. Unlike today's

fish, the earliest fish had no scales, fins, or jawbone, but they did have a type of dorsal fin. Over time they have been changing in form and size to adapt to different environments, in both fresh

water and salt water. Their bodies are generally streamlined, being covered with smooth scales and having fins that enable them to move with energy, direction, and stability. In place of lungs, EARLIEST FORMS 8-9 DISTINGUISHING FEATURES 10-11 ANATOMY 16-17 BONY FISH 12-13

CARTILAGINOUS FISH 14-15

these complex creatures normally breathe through gills that capture oxygen dissolved in the water, and they are cold-blooded.

Earliest Forms

bout 470 million years ago, the first fish appeared. Unlike today's fish, they did not have a jawbone, fins, or scales. Hard plates covered the front part of the fish and formed a protective shield. They also had a solid, flexible dorsal spine that allowed them to propel themselves. Later, in the Silurian Period, fish appeared that had a jawbone. Known as the gnathostomata, they were large predators.

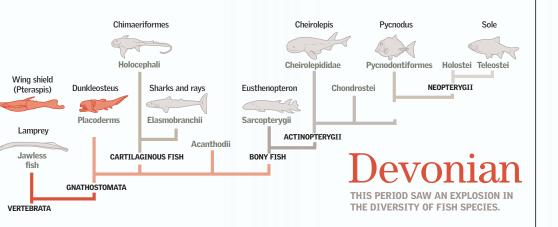
STREAMLINED SHAPE The shape of Pteraspis shows that it was an excellent swimmer.

DORSAL SPIKE

dorsal fin

Located on the fish's

back, it worked like a


Dunkleosteus

The Arthrodira—with a jointed neck-were armored fish that predominated in the late Devonian Period. The Devonian predator Dunkleosteus was an arthrodiran placoderm that lived over 300 million years ago. Its head was encased in an impressive set of plates 1.2 inches (3 cm) thick, with razor-sharp bony plates that served as teeth.

FIERCE JAW Dunkleosteus was a fierce predator that devoured any type of prey, including sharks.

DORSAL SPINES These helped the fish to stay balanced while swimming

LATERAL LINE Sensory organs are present on both sides of the body and on top of the armor

Pteraspis

The fish without a jawbone, Pteraspis, was about 6.5 inches (16 cm) long and lived in the seas of Europe, Asia, and North America. These fish were most abundant during the Devonian Period. They had bodies with armor that covered their heads, and they had a streamlined shape. The shell had a conical nose that helped the fish to move.

WING SHIELD

Scientific Pteraspis name Diet Small organisms Habitat Sea, then rivers and lakes Europe, Asia, North America Range Period Early Devonian

EVOLUTION OF THE JAWBONE

The development of the jawbone was a long evolutionary process that involved changes in the diet of fish to include not only small organisms but also other fish.

1 PRIMITIVE VERTEBRATE The first fish had no jawbone.

ELASMOBRANCHIMORPH 2 The formation of the jawbone permitted new feeding habits, and the fish evolved from herbivore to carnivore

> **BONY FISH** They already had a specialized jawbone like fish of today.

CONICAL NOSE EYES Its streamlined shape Very small, helped the fish move. located on both sides of the head.

cranium

MOUTH

organisms

Having no jawbone,

they fed on small

The evolution of the jawbone modified the configuration of the skull.

Fish with lungs appeared in the Mesozoic Era (200 million years ago). Similar to amphibians, these species breathe with lungs and are now considered living fossils. The line through the center of the photo of the fossil is the fish's lateral line.

FOSSILIZED LUNGFISH SCALES Dinterus valenciennesi

Evolution

In the Devonian Period ocean fish began to diversify. Coelacanths appeared, as well as the earliest bony fish and the first cartilaginous fish, including sharks. In this period the three main groups of gnathostomad fish also appeared: the placoderms, chondrichthyes, and osteichthyes.

FISH AND AMPHIBIANS 9

Its head was protected by strong armo

Dorsa

The tail was not protected by scales.

This area of the body had neither armor nor scales.

It had a lobed tail, similar to a shark's tail, which indicates that it was a powerful swimmer.

It also had strong jaws with bony teeth.

16 feet (5 m)LENGTH OF THE FISH

TAIL The shape of the tail helped balance the weight of the armor.

Distinguishing Features

S imilar characteristics define nearly all fish, with a few rare exceptions. These aquatic animals are designed to live underwater, and they have a jawbone and lidless eyes and are cold-blooded. They breathe through gills and are vertebrates—that is, they have a spinal column. They live in the oceans, from the poles to the equator, as well as in bodies of fresh water and in streams. Some fish migrate, but very few can pass from salt water to fresh water or vice versa. Their fins enable them to swim and move in different directions. Animals such as dolphins, seals, and whales are at times mistaken for fish, but they are actually mammals.

EYES NASAL PITS Also called nares; lie on either side of

the head

HEAD One of the three main divisions of its body **PECTORAL FIN** Symmetrical, relatively small, and with a radial structure **ANTERIOR DORSAL FIN** This fin has stiff rays and has a stabilizing function.

MOUTH The angle of the mouth affects what the fish can eat.

OPERCULUM A bony flap that covers the gills and helps regulate water flow

covers **GILLS** is The fish's ow breathing organs

PELVIC FINS These permit the fish to swim upward and downward.

ANAL FIN Soft, with a row of finlets

Nearfossils

Choanichthyes

(Sarcopterygii) are archaic bony fish with fleshy fins.

Some of them were the first

Latimeria chalumnae

This species was thought to have gone extinct

alive off the coast of South

these fish were found later.

Africa in 1938: more of

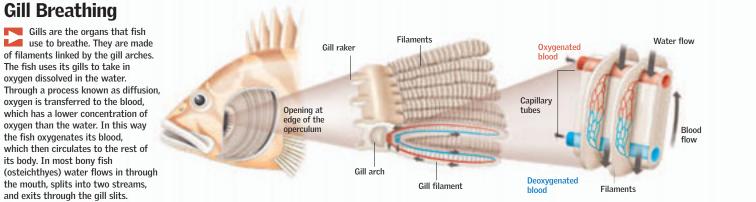
SCALES

The scales are

imbricate-that

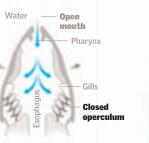
is, they overlap

one another.


millions of years ago, until one was discovered

animals with lungs. Only a

few species survive.


COELACANTH

TAIL MUSCLE This is the strongest muscle in the fish.

In Action Water enters the mouth and flows over the gills. After the gills extract oxygen, the water is expelled through the gill slits.

Operculum Opens and closes the openings where water exits

POSTERIOR

DORSAL FIN

This soft-structured fin is located

between the dorsal

fin and the tail.

C sl sl

fish.

Jawless Fish

Of the ancient agnathans, considered the first living vertebrates, only lampreys and hagfish are left.

SEA LAMPREY *Lampetra* sp.

Its round, toothed mouth allows it to suck the blood of fish of various species. There are also freshwater lampreys.

Cartilaginous fish, such as rays and sharks, have extremely flexible skeletons with little or no bone.

RAY *Raja miraletus*

Its large fins send currents of water carrying plankton and small fish to its mouth. The ray is very fast.

> **LATERAL LINE** Fish have sensory organs all along this line.

With Spines

Osteichthyes is the most numerous class of fish. The skeleton has some level of calcification.

ATLANTIC MACKEREL *Scomber scombrus*

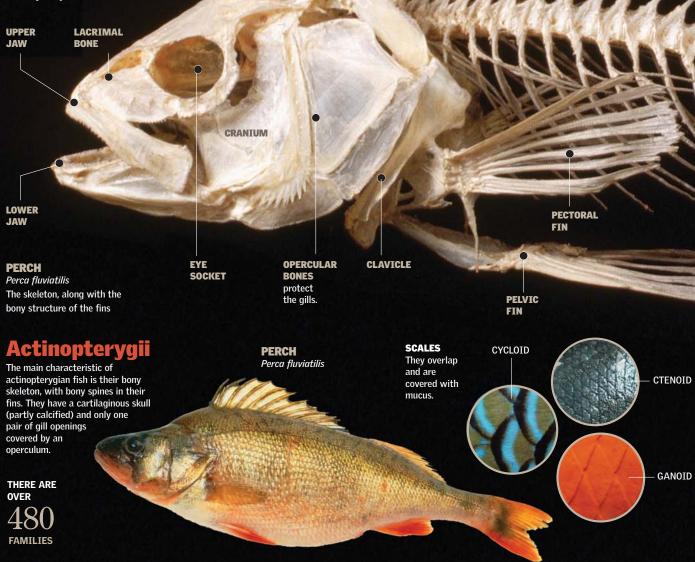
This fish has no teeth. It lives in temperate waters, and its meat is considered delicious. It can live for more than 10 years.

CAUDAL FIN – It moves from side to side, propelling the fish forward.

Closed mouth

Open operculum

25,000


Is the number of known fish species, making up nearly one half of all chordate species.

Bony Fish

he group of fish that have evolved and diversified most in the last few million years are the osteichthyes, fish with spines and jawbones. In general, their skeletons are relatively small but firm, being made mostly of bone. Flexible fins enable them to control their movements with precision. The various species of osteichthyes have adapted to a wide variety of environments and even to extreme conditions.

Solid Structure

The skeleton of a bony fish is divided into the cranium, spinal column, and fins. The opercula, which cover their gills, are also made of bone. The cranium holds the brain and supports the jawbone and gill arches. The vertebrae of the spine are jointed; they provide support to the body and join the ribs at the abdomen.

INTERHEMAL (VENTRAL) SPINES support the spiny rays of the anal fin.

RIB

Sarcopterygi

Another name for the Choanichthyes, a subclass of bony fish. Their fins, like the fins of whales, are joined to the body by means of fleshy lobes. In lungfish, <u>these lobe</u>d fins look like filaments.

FIRST DORSAL FIN

OCEAN SUNFISH

Mola mola The largest osteichthian fish, it can grow to be 11 feet (3.3 m) long and can weigh 4,000 pounds (1,900 kg).

SECOND DORSAL FIN

The Swim Bladder

An appendage of the intestines that regulates flotation by filling with and emptying itself of gas. The gas enters through a gland that extracts the gas from a net of capillaries, called the rete mirabile, and it leaves the bladder through a valve that causes it to dissolve back into the blood.

EMPTY FULL When the fish empties its By reducing its swim bladder, it sinks. density, the fish rises. Rete Dorsal Mirabile Aorta Gas SWIM BLADDER Gland VERTEBRA Neural spine Neural arch VERTEBRAL COLUMN Centrum The main nerves and blood vessels run above and Hemal arch below the bony (chevron) center of the spine Hemal spine CAUDAL FIN VERTEBRAE SPINY RAYS **OF ANAL FIN**

March .

CAUDAL FIN propels the fish through the water.

COELACANTH Latimeria chalumnae

> DETAIL OF FLESHY FIN

Cartilaginous

s indicated by the name, the skeleton of cartilaginous fish is made of cartilage, a flexible, durable substance that is softer than bone. They have jaws and teeth, which are usually hard and sharp. Their body is covered with hard scales. However, they lack a characteristic shared by most bony fish—the swim bladder, an organ that helps fish to float. Their pectoral fins, tail, and flat head give this group a streamlined profile.

Sharks

These fish live in tropical waters, although some do inhabit temperate waters or fresh water. They have an elongated, cylindrical shape and a pointed snout, with the mouth on the underside. Each side of their head has five to seven gill slits.

2,650 pounds LIGHT AND FLEXIBLE $\overline{(1.2 \text{ metric tons})}$ NORMAL WEIGHT OF A SHARK

SHARP TEETH

triangular in shape. All chondrichthves lose their teeth

The teeth are

and grow

new ones.

Nostril

COLUMN

BLOOD They are cold-blooded

> Heatgenerating muscles

Epidermi Sensory cells

Nerves

(SUPERORDER SELACHIMORPHA)

Gelatinous tract

ACUTE SENSES Chondrichthyes have ampullae of Lorenzini, acutely sensitive lateral lines, and a highly developed sense of smell. AMPULLAE OF

Surface

LORENZINI detect electric signals transmitted by potential prey.

Primitive

The ancient origin of Chondrichthyes contrasts sharply with their highly evolved senses. This is a fossilized cartilage vertebra of a shark from the Paleozoic Era, between 245 and 540 million years ago. It was found in a fossil deposit in Kent, England. The blood of sharks has a high concentration of urea, which is presumed to be an adaptation to salt water and constitutes a fundamental difference between sharks and their freshwater ancestors.

Manta Rays

These fish have two pectoral fins joined on the front of the body. They use them to swim, giving the impression that they fly in the water. The rest of the body moves similarly to a whip. Their eyes are located on the upper side of the body; the mouth and gills are on the lower side.

RAY

Raja clavata (Thornback Ray) This species lives in cold oceans in depths up to 660 feet (200 m).

Rays may have five or six rows of gills; chimaeras have only one. GILL SLITS

SCALES Most of these fish have skin with thousands of interlocking scales, called denticles or placoid scales.

IN SOME SHARK SPECIES, THE YOUNG **DEVELOP WITHIN THE FEMALE, INSIDE A** STRUCTURE SIMILAR TO A PLACENTA.

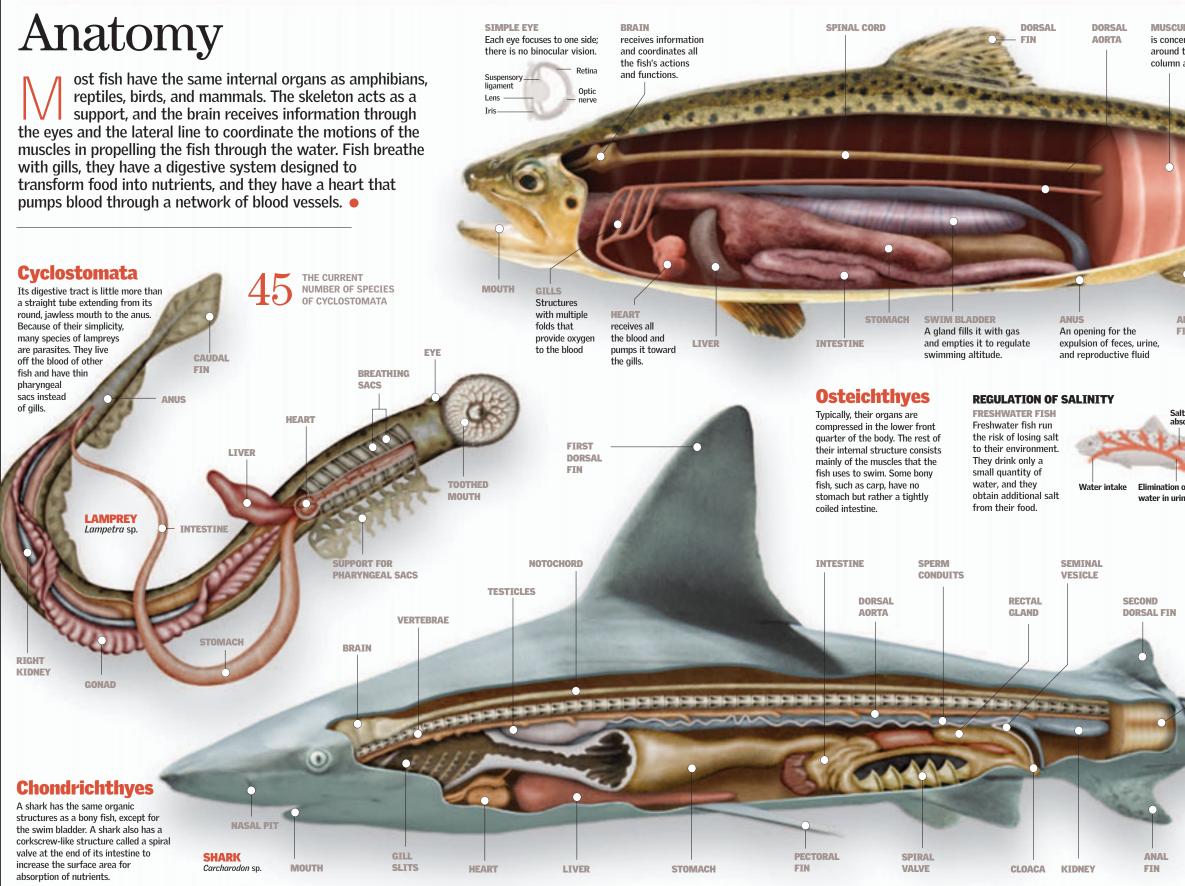
lower lobe.

HETEROCERCAL TAIL The shark's caudal fin is small, and the upper lobe is larger than the

HOW IT REPRODUCES

The modified pelvic fin of the male is its sexual organ. The fin penetrates the female, which then lays a string of eggs. The young are not born in larval form.

SHARK


Superorder Selachimorpha This X-ray shows the spine and nerves.

Chimaerae

Deepwater fish. Like the prehistoric animals, they have large heads and pectoral fins. They have a spine in front of the first dorsal fin. The back end of the body narrows into a tail followed by a thin filament.

CHIMAERAS Rhinochimaera

pacifica This fish lives in the dark at depths of up to 4,900 feet (1,500 m); it is 4 feet (1.2 m) long.

FISH AND AMPHIBIANS 17

MUSCULATURE is concentrated around the spinal column and the tail.

THE SURFACE AREA OF THE GUIS **IS 10 TIMES THE SURFACE AREA** OF THE REST OF THE FISH.

LATERAL LINE has sensitive receptors that are connected to the brain.

CAUDAL FIN is divided into symmetrical lobes.

BROWN TROUT Salmo fario

ANAL

FIN

water in urine

SALTWATER FISH These fish constantly absorb salt water to replenish the water in their bodies, but they must eliminate excess salt from the marine environment.

Wate

through the gills

Excretion of salts Excretion of salts through urine

Water outlet

MUSCLE SEGMENTS

UPPER **CAUDAL LOBE**

> 620 KNOWN SPECIES OF CHONDRICHTHYES

LOWER CAUDAL LOBE

Life in the Water

GLOBEFISH When threatened, this strange animal reacts by swallowing water until it blows up like a balloon.

he idea that fish are blind is wrong. Most fish have the best possible eyesight for their habitat. Further, they can see in color and use colors to camouflage themselves or defend their territory. Most fish can vary their coloring when something changes in their environment. Silverfish, common in all freshwater habitats, have dark backs (ranging from greenish brown to dark blue), but the sides of their bellies are silvery white. When viewed from above, their backs become confused with the deep hues of the river water or even with PROTECTIVE LAYER 20-21 EXTREMITIES 22-23 THE ART OF SWIMMING 24-25 WONDERS OF COLOR 26-27 ASSORTMENT OF SHAPES 28-29 YOU ARE WHAT YOU EAT 30-31 LIFE CYCLE 32-33 MATTERS OF LIFE AND DEATH 34-35 THE BEST DISGUISE 36-37

the crystalline blue of lakes. Seen from below, the lower part becomes confused with bright reflections in the water. •

The remains of these thick, shiny, enameled scales belong to the extinct genus Lepidotes,

a fish that lived during the Mesozoic Era.

FOSSILIZED SCALES

ost fish are covered with scales, an external layer of transparent plates. All fish of a given species have the same number of scales. Depending on the family and genus of a fish, its scales can have a variety of characteristics. Scales on the lateral line of the body have small orifices that link the surface with a series of sensory cells and nerve endings. It is also possible to determine a fish's age by studying its scales.

Original

scales

External focus Internal radius

Ganoid scales

Rhomboid in shape, these scales are interwoven and connected with fibers. The name comes from their outer covering, which is a layer of ganoin, a type of shiny enamel. Sturgeon and pipefish have scales of this type.

Focus

Toothed

spokes

RED SNAPPER

Lutjanus campechanus

STURGEON Acipenser sturio

Cycloid scales

among bony fish, the cycloid scales are organized so that the exposed surfaces such as those of carps and silversides.

SALMON Family Salmonidae

along the lateral line), among other characteristics.

BLUE SHARK Prionace glauca

Placoid Scales

Typical of cartilaginous fish and other ancient species, these scales are made of pulp, dentine, and enamel, similar to the composition of teeth, and they have small extensions. The scales are usually very small and extend outward.

EPIDERMIS With protective mucus

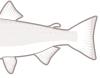
Ctenoid scales

These scales overlap like tiles on a roof, the same as cycloid scales. Another very common type of scale among bony fish, they are rough, having small extensions that look like combs.

> PERCH Perca sp.

AGE BY SCALES

A fish does not add new scales as it grows, but the scales it has increase in size. In this way growth rings are formed, and the rings reveal the age of the specimen.



Winter growth line

Summer arowth line

Exposed

One of the most common types of scales overlap, forming a smooth and flexible cover. They are round with a soft, exposed surface,

DISTRIBUTION OF SCALES Most scales occur in rows that slant diagonally downward and back. Species can be accurately identified by the number of rows (as counted

Extremities

fish can control its motion, direction, and stability by means of its fins and tail. Anatomically these are extensions of the skin beyond the body and, in most bony fish, are supported by rays. The fins reveal much about the life of each fish. Thin fins with a split tail indicate that the animal moves very quickly, or it may need them to cover great distances. On the other hand, fish that live among rocks and reefs near the ocean floor have broad lateral fins and large tails.

FIN RAYS Bony filaments that are joined by a membrane

The highest and longest lobe turns upward.

GREY REEF SHARK Carcharhinus amblyrhynchos The heterocercal tail is typical of these cartilaginous fish, as well as of sturgeons.

1/8 The proportion of the length of a salmon's homocercal tail with respect to its body.

Homocercal Tail

The caudal fin is divided into two equal lobes,

an upper and a lower lobe, which extend from

the end of the spinal column.

The Typical Tail

The vast majority of bony fish have homocercal tails.

An Integrated Team

In general, fish have seven fins: three single fins (dorsal, caudal, and anal) and two sets of paired fins (pelvic and pectoral). Each fin has specific functions related to the fish's movement. In all bony fish, the fins are made of bony rays and not of flesh. Tuna and a few other fish have one extra fin between the dorsal and caudal fins. Their thin lateral fins indicate that they can swim at high speeds. Others, such as the roosterfish (Nematistius pectoralis), have huge dorsal and ventral fins, and their main function is different: they are used to scare off potential predators.

Dorsal fin-stabilizing function

> The ventral fins function like hydroplanes.

GOLDFISH Carassius auratus A species bred for its beauty. Its tail can have eight different shapes.

HALF-MOON SHAPE To provid sneed

SALMON Salmo genus Large dorsal and anal fins with pointed ends

of the spine.

Heterocercal Tail Its two lobes are uneven. The dorsal spine turns

upward in the highest lobe, and the rays that form the two lobes of the caudal fin extend from the lower end of the spinal column.

The shark's spine extends into the upper lobe of the caudal fin.

1/3 The proportion of the lower lobe of the tail to the upper lobe of the tail

The spinal column ends in a broadened structure

The lower lobe is smaller and is merely a projection to the side

FISH AND AMPHIBIANS 23

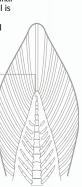
Tuna's adipose fin–no known function

Caudal fin-propelling function

Anal fin-together with the dorsal fin, works as a steering device.

Pectoral fins joined to the skull-used for swimming

> GOLDFISH Carassius auratus Bright and colorful, highly prized by aquariums


AFRICAN LUNGFISH Protopterus annectens There are four extant species of this fish and few specimens, but they proliferated during the Devonian Period.

> FILAMENTS Short and symmetrical above and below

Diphycercal Tail

This kind of tail ends in a point; the spinal column reaches to the end, and the tail is surrounded above and below by a soft caudal fin. This very rare form is found on some sharks and hakes and in archaic bony fish.

The dorsal spine extend to the tip of the fin.

The Art of Swimming

o swim, fish move in three dimensions: forward and back, left and right, and up and down. The main control surfaces that fish use for maneuvering are the fins, including the tail, or caudal fin. To change direction, the fish tilts the control surfaces at an angle to the water current. The fish must also keep its balance in the water; it accomplishes this by moving its paired and unpaired fins. •

GREAT WHITE SHARK

Carcharodon carcharias

MUSCLES The tail has powerful muscles that enable it to move like an oar.

aua

Starting Out

The movement of a fish through the water is like that of a slithering snake Its body goes through a series of wavelike movements similar to an S curve. This process begins when the fish moves its head slightly from side to side.

At first the

tail is even

KEEL

with the head

The crest of the body's wave moves from back to front

Red muscles are for slow or regular movements.

UPSIDE-DOWN

Synodontis nigriventris

CATFISH

This fish swims upside down,

seeking food sources that are less accessible to other species.

arger white muscles are for moving with speed, but they tire easily.

> In its side-to-side movement, the tail displaces the water.

> > The head

ves from

side to side

STREAMLINED SHAPE

is in the front part of its body. As the fish swims water behind. This reduces the water's resistance

Like the keel of a ship, the rounded contours of a fish are instrumental. In addition, most of a fish's volume forward, its shape causes the density of the water ahead to be reduced relative to the density of the

THE FISH'S KEEL

LTVE

A ship has a heavy keel in the lower part to keep it from capsizing. Fish, on the other hand, have the keel on top. If the paired fins stop functioning to keep the fish balanced, the fish turns over because its heaviest part tends to sink, which happens when fish die.

DEAD

FISH

THE FASTEST The powerful caudal The unfurled dorsal fin displaces large fin can be up to 150 ounts of wate percent of the width of the fish's body SAILFISH Istiophorus platypterus 70 miles per hour (109 km/h) The maximum swimming speed it attains hydrodynamics

Its long **upper jaw** enables it to slice through the water, aiding this fish's

Forward Motion

results from the synchronized Scurve movement of the muscles surrounding the spinal column. These muscles usually make alternating lateral motions. Fish with large pectoral fins use them like oars for propulsion.

The oarlike movement of the tail is the main force used for forward motion

dorsal fin keeps the fish upright.

Balance

Forceful Stroke

Muscles on both sides of the spinal column, especially the tail muscles, contract in an alternating pattern. These contractions power the wavelike movement that propels the fish forward. The crest of the wave reaches the pelvic and dorsal fins.

When the crest reaches the area between the two dorsal fins, the tail fin begins its push to the right.

wave passes to the first dorsal fins.

The crest of the

Swimming in Groups

Only bony fish can swim in highly **L** coordinated groups. Schools of fish include thousands of individuals that move harmoniously as if they were a single fish. To coordinate their motion they use their sight, hearing, and lateral line senses. Swimming in groups has its advantages: it is harder to be caught by a predator, and it is easier to find companions or food.

School

A group of fish, usually of the same species, that swim together in a coordinated manner and with specific individual roles

1 cubic mile $(4 \,\mathrm{cu} \,\mathrm{km})$

The area that can be taken up by a school of herring

FISH AND AMPHIBIANS 25

The pectoral fins maintain balance and can act as brakes.

The ventral fins stabilize the fish for proper balance

> Paired fins

Upward and

The angle of the fins relative to the body allows

located in front of the center of gravity, are used

the fish to move up or down. The paired fins,

for this upward or downward movement

Downward

Descen

Ascent

When the fish is moving slowly or is still in the water, the fins can be seen making small movements to keep the body in balance.

When the tail moves back toward the other side and reaches the far right, the head will once again turn to the right to begin a new cycle.

1 second

The amount of time it takes for this shark to complete one swimming cycle

> **CAT SHARK** Scyliorhinus sp.

The resulting impulse moves the fish forward

> The fish on the outside quided by those in the middle, are in charge of keeping the group safe

The fish in

the middle

control the

school

Wonders of Color

ish use color to communicate with others of their species. They also use color in mating rituals and even to hide from their prey. A young emperor angelfish has blue and white spirals, but it develops its own appearance when it reaches maturity. This helps it to find a mate and define its territory. Today science is discovering how fish perceive differences of color and what sort of messages the colors convey.

EMPEROR ANGELFISH Pomacanthus imperator

This fish comes in various sizes and colors. It also changes shades as it matures. Its white stripes on a blue background form concentric rings, and they grow just enough to give the adult fish magnificent horizontal yellow stripes.

SIAMESE FIGHTING FISH Betta splendens

One of the most popular freshwater species. Only the males exhibit a wide variety of colors-red, green, blue, and purple—which they obviously use as a form of seduction.

PERCULA CLOWNFISH Amphiprion percula

The clownfish is known for its intense red, orange, and white colors. It lives among anemones, a predator species that affords it protection from possible attackers.

OCELLARIS CLOWNFISH Amphiprion ocellaris

This fish has an orange body with two white bands. It lives in coral reefs from Sri Lanka to the Philippines and north of Australia.

HUMPBACK GROUPER Cromileptes altivelis

This fish is found in southeast Asia, and its meat is considered a delicacy by gourmets. It lives in caves as a means of defense from predators.

WRASSE Bodianus sp.

This fish's showy colors repel potential predators, with the contrasting tones serving as a warning

CLOWN TRIGGERFISH Balistoides conspicillum

Half of its body is black with large white spots, and the other half is nearly all black, with a group of strange black shapes with a yellow border. Its bright orange lips look like those of a clown.

MANDARIN DRAGONET Synchiropus splendidus

Covered with psychedelic swirls in green, blue, and yellow, this is one of the most beautiful fish on the planet. This small species lives hidden among the rocks of coral reefs.

GOLDFISH Carassius auratus

This adaptable fish is the most popular for aquariums. Its highly developed sense of smell is important in its search for mates and food.

WHITETAIL DAMSELFISH Dascyllus aruanus

With its white body and three thick black stripes, this fish swims among rocks and coral, blending in with its environment

HARLEQUIN TUSKFIS

Choerodon fasciatus

One of the most brightly colored species of fish in the tropical seas, this fish is endangered by its popularity with aquarium aficionados.

THREADFIN BUTTERFLY FISH Chaetodon auriga

A dark band covers each eye, and a black eye-shaped spot on its tail fools predators by making them believe the fish is bigger than it really is.

Assortment of Shapes

ost fish have a typical streamlined shape, as exemplified by salmon or trout. Other species have developed widely varying characteristics as adaptations to their environment or diet. The longnose hawkfish has a pronounced proboscis for eating invertebrates on the seabed. The stiff, slender body of the longhorn cowfish causes it to swim slowly and clumsily. And the clown knifefish has a flattened, knifelike body that enables it to move

FIRE GOBY

Nemateleotris magnifica

comes from its pronounced upright dorsal fin. This

small fish is barely the

size of a finger.

In the Indian and Pacific oceans this fish swims among coral reefs in search

of food. Its other name, fire dartfish,

more easily through the water.

PRICKLY LEATHERJACKET

Chaetodermis penicilligerus

Inhabiting coral reefs in the tropical waters of the Indian and Pacific oceans, Australia, and northern Japan, this fish can be up to 12 inches (30 cm) long.

SEAWEED PIPEFISH Syngnathus schlegeli

LONGHORN COWFISH Lactoria cornuta

inhabits the Pacific Ocean and the Red Sea. Its rigid skeleton makes it a clumsy swimmer in spite of its beautiful silhouette. It has two horns on the upper part of its head.

RED HANDFISH Brachionichthys politus

Limited to coastal habitats of Australia, this inoffensive fish has an average size of 6 inches (15 cm).

CLOWN KNIFEFISH Chitala chitala

The name knifefish comes from its flattened shape. It inhabits the waters of southern Asia and swims mainly with its anal fin.

> IGELFISH Pterophyllum scalare Inhabiting South American rivers in the central Amazon system and its tributaries as far as eastern Peru and Ecuador, this fish has faint stripes across its body.

CLOWN CORIS Coris aygula

This tropical fish of the Indo-Pacific region is white in front with black spots, which are more densely scattered near the head and disappear completely before the tail is reached.

LONGNOSE HAWKFISH Oxycirrhites typus

Inhabiting coral reef zones in the Indian and Pacific oceans, this fish is marked by brown stripes that form a grid. It uses its long nose to trap prey.

SPOTTED SCORPION FISH

Scorpaena plumieri The most poisonous of all sea creatures, this fish eats small fish and mollusks. Its body is specially designed to mimic the seafloor.

12

You Are What You Eat

ost fish feed in their natural environment, the larger fish eating the smaller ones, and the smallest sea creatures feeding on marine plants. A fish's mouth gives many clues about its feeding habits. Large, strong teeth indicate a diet of shellfish or coral; pointed teeth belong to a hunting fish; and a large mouth that is open while the fish swims is that of a filterer. Some species can also trap food that lives outside the water: trout, for example, hunt flies.

CORAL Parrotfish feed on corals.

Grazers

This group of fish eats vegetation or coral in small bites. Parrotfish (Scaridae) have a horny beak made of fused teeth. They scrape the fine layer of algae and coral that covers rocks and then crush it into powder using strong plates in the back of the throat.

FUSED TEETH Parrotfish have a strong beak that enables them to bite the bony skeleton of corals and eat the algae that grows on them. The beak is actually made of individual teeth, arranged in a beaklike structure.

> After biting a clump of coral covered with algae, the grin

Predators

These are fish that feed on other species. They have teeth or fangs that help them to wound and kill their prey or to hold it fast after the attack. Predators use their sight to hunt, although some nocturnal species such as moray eels use their senses of smell and touch and those of their lateral line. All predators have highly evolved stomachs that secrete acid to digest meat, bones, and scales. Such fish have a shorter intestinal tract than herbivorous species, so digestion takes less time.

> PIRANHA Pygocentrus sp.

RAZOR-SHARP TEETH Large, sharp teeth go along with a predator's diet

MOUTH acts as a filter As it swims along with its mouth open, zooplankton and small fish are trapped.

WHALE SHARK Rhincodon typus

Filterers

Some species have evolved to the point of being able to take from the water only those nutrients they need for feeding. They filter the nutrients out using their mouths and gills. These species include whale sharks (Rhincodon typus), herring (Clupea sp.), and Atlantic menhaden (Brevoortia tyrannus).

is the interaction between two organisms that live in close cooperation. One type of symbiosis is parasitism, in which one organism benefits and the other is harmed. An example of a parasite is the sea lamprey (Petromyzon marinus), which sticks to other fish and sucks their body fluids to feed itself. Another type symbiosis is commensalism, in which one organism benefits and the other is not harmed. An example is the remora (Remora remora), or suckerfish, which sticks to other fish using suction disks on the end of its head.

> SUCKERS They close their eyes, turn them, and push them downward to increase the pressure of the mouth.

> > REMORA Remora remora

Plants

Life in the water is based on phytoplankton, which is eaten by zooplankton. These are in turn eaten by fish, all the way up to the large marine species.

Suckers

Species that live in the depths, such as sturgeons (Acipenseridae) and suckerfish (Catostomidae), spend their days sucking the mud on the seafloor. When they are cut open, large amounts of mud or sand are found in the stomach and intestines. Digestive mechanisms process all this material and absorb only what is needed.

DIFFERENCES

Carnivorous fish eat all sorts of species, even though their basic diet consists of meat. They have terminal-type mouths, muscular stomachs, and short intestinal tracts. Herbivores feed on aquatic vegetation. They have a long intestinal tract compared with other fish.

> PARROTFISH Scarus sp.

Types of Mouths

Inferior

Protusible

STURGEON Acipenser sp

BARBELS The sturgeon has a prominent snout. In its mouth it has fou

PHARYNGEAL PLATES

pharyngeal plates, strong grinding structures in the throat crush the hard, stony pieces.

Life Cycle

n an underwater environment, animals can simply secrete their sex cells into the water. But for fertilization to be effective, the male and the female must synchronize their activities. Many species, such as the salmon, travel great distances to meet with potential mates. Upon meeting a mate they release their sex cells. The time and place are important because the survival of the eggs depends on the water temperature. Parent-child relations are extremely varied, from complete neglect of the eggs once laid to constant watchfulness and protection of the young.

Male salmon

External Fertilization

In most fish, fertilization is external to the female's body. The male secretes sperm onto the eggs as soon as they leave the female's body. Typically, the young hatch from the eggs as larvae. Salmon is one species that reproduces this way.

Female salmor

The ovule and A the sperm join to form the egg.

The smal C living being begins to arow

Then the embryo forms

Laving ECICI DAY 1

After traveling from the sea to the river, the female lays her eggs in a nest she digs in the gravel. The strongest available male then deposits his sperm over them.

The female lays between 2,000 and 5.000 eggs

All salmon begin life in fresh water and then migrate to the sea. To lay eggs, they return to the river.

HATCHING

for the eggs to hatch

90 AND 120 DAYS The period of time needed

OUNG FISH (FRY)

BODY OF

THE FRY

121 DAYS The small fry feed from the yolk sac.

6 Year Cycle This is the life span of a salmon

> 6 years The adult salmon have fully mature reproductive organs, and they return to the river where they were born to lay their eggs

Parents

The yellow-headed jawfish, **Opisthognathus aurifrons**, incubates its eggs inside its mouth.

Mouth Incubation

The gestation of some fish species takes place inside the parents' mouths. They incubate the eggs inside their mouths and then spit them out into the burrow. Once the eggs hatch, the parents protect their young by sheltering them again inside their mouths.

Internal Fertilization

Viviparous fish give birth to their young in the form of developed juveniles. Fertilization is internal, carried out by a male organ called the gonopod, which is a modified fin

> Paraplacental uterine space

Place

FRY'S YOLK SAC

BODY OF

THE FRY

Juveniles

2 years

Salmon fry grow until they become small juvenile salmon. They migrate to the sea, where they live for four years.

Young male

Young female

Matters of Life and Death

 o survive, most fish need adaptations to enable them to flee from their predators or to find food. The European plaice can lie on the ocean floor with its flat body. Its ivory color makes it almost invisible. The flying fish, on the other hand, developed pectoral fins to lift itself up over the surface of the water and flee its enemies.

European Plaice

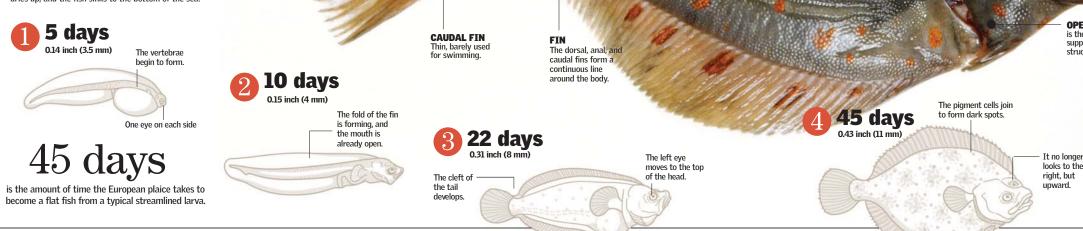
The European plaice (*Pleuronectes platessa*) is a flat fish with a shape especially designed to allow it to remain motionless on the seafloor. It also provides an example of mimesis. Its two sides are very different. The top side is pigmented with small red spots that camouflage the fish on the seafloor, where it uses its fins to cover itself with sand to hide from predators.

MOUTH

The European plaice's entire body undergoes metamorphosis from its larval state to adulthood. The mouth, however, remains the same

EUROPEAN PLAICE Pleuronectes platessa

side rests on the ocean floor


VENTRAL SIDE remains an ivory color, devoid of

pigmentation. This

SPOTS are useful for camouflage in the sand and for hiding from its predators

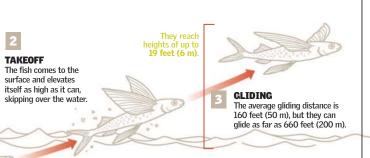
Transformation

At birth, the European plaice does not have a flat form but looks like a normal fish. It eats near the surface and swims using its swim bladder. As time goes by, its body becomes flat. The swim bladder dries up, and the fish sinks to the bottom of the sea.

Flying Fish

Exocoetidae, or flying fish, are a family of ocean fish that includes 52 species grouped in eight genera. They are found in all the oceans, especially in warm tropical and subtropical waters. Their most surprising characteristic is their unusually large pectoral fins, which give them the ability to fly and glide for short distances.

When a predator appears, the flying fish propels itself out of . the water



7 to 18 inches (18 to 45 cm) long

> EYES Both are located on the right side.

OPERCULUM is the bone that supports the gill structure

FISH AND AMPHIBIANS 35

These fish cover distances of up to 160 feet (50 m) in the air.

ANATOMY

This fish slides over the water with its hardened fins, and it can reach speeds up to 40 miles per hour (65 km/h) for as long as 30 seconds.

This fish has highly developed pectoral and pelvic fins.

> **FLYING FISH** Exocoetus volitans

GILLS The European plaice breathes through its gill

> **SCORPION FISH** Scorpaena plumier

Scorpion Fish

Found in the reefs of the Gulf of Mexico, Scorpaena plumieri, known commonly as the scorpion fish, has a brown, spotted body with many appendages that look like moss between its mouth and its eyes. This fish is hard to see because its texture and color help it blend easily into the seafloor. Its dorsal fins have a powerful venom, which causes intense pain.

The Best Disguise

o face their enemies, fish have developed a number of strategies to enable them to survive. Some of these are escaping, hiding in the ocean bed, or stirring up sand to avoid being seen. Other species have poison, and some can inflate and raise barbs or spines to discourage predators. In the oceans' depths are fish that have luminous organs that blind the enemy.

Spot-Fin Porcupine Fish

Like its relative the globefish, this fish swallows water when it feels threatened, swelling up to three times its normal size. This makes it very difficult to fit inside the mouth of a Spinal column

predator. This fish has another defense mechanism: its modified scales act as barbs. When the fish's size increases, the scales extend perpendicularly from the skin.

Wate Stomach **HOW IT INFLATES**

The water enters through the fish's mouth. The stomach stores water and begins to increase in size. The spinal column and the skeleton are flexible and adapt. If the fish is taken out of the water, it can inflate in a similar way by swallowing air.

The stomach fills with

NN /

The spine CURVES

At Rest

The scales of the porcupine fish lie flat against its body, and its appearance is no different from that of any other bony fish. When it deflates after an attack, it returns to its original state.

Self-Defense

Inflated porcupine fish can reach a diameter of up to 35 inches (90 cm). This makes swallowing them impossible for medium-size predators, which are frightened simply by the porcupine fish's appearance.

SPOT-FIN **PORCUPINE FISH** Diodon hystrix

Sharp Enough to Cut

The sharp blades of the yellow tang's caudal appendage look like scalpels. This fish can retract and extend its blades at will to hurt potential attackers. The fish eats only algae; it measures some 20 inches (50 cm) long.

STIFF SPINES

Modified scales, hard and resistant, are found all over its body, except for the tail. When these scales are extended, it is almost impossible for a predator to bite or swallow this fish.

FISH AND AMPHIBIANS 37

YELLOW TANG **Zehrasoma** flavescens

This fish frequently swims in schools with fish of other species.

Strange Garden

Garden eels can bury much of their body in the sandy seafloor and become stiff. A group of buried garden eels looks like a colony of algae or coral, even though their tiny eyes are on the lookout for the small species they eat. At the slightest sign of danger, they go into their burrows.

Eels in a

The eel hardens its muscled body and buries its tail, leaving its head in the open.

Walls covered with mucus secreted by the skin of the animal's tail

GARDEN EEL Taenioconger hassi

Diversity

SHARK To locate its prey, the shark uses several of its senses-smell and hearing over long distances and sight at short range.

LONG AND FLEXIBLE 40-41 TIME TO EAT 46-47

he ocean depths are inhabited by many types of fish. Some are harmless, but others, such as the scorpion fish, are among the most poisonous creatures in the

world. The most feared fish is the great white shark, a true underwater predatory machine—though it seldom attacks humans. In this chapter we will also tell you about the odyssey of many salmon

and trout species, which can travel thousands of miles from their ocean home to lay their eggs in the rivers or lakes where they were hatched. The journey lasts from two to three months,

ELEGANT CONTOURS 42-43 DEADLY WEAPON 44-45 THE JOURNEY HOME 48-49

HABITAT, TASTES, AND PREFERENCES 50-51 DANGER IN THE WATER 52-53 KINGS OF DARKNESS 54-55 SEA SNAKES 56-57 OUT OF THE WATER 58-59

and it involves many dangers. It requires so much energy that, after laying their eggs, many females die.

Long and Flexible

• he seahorse is a small ocean fish that belongs to the same family as pipefish and sea dragons (Syngnathidae). Its name comes from its horselike head. In fact, no other fish genus has its head at a right angle to the rest of its body. Because it cannot use speed to escape from its predators, the seahorse has the ability to change color to blend in with its environment. The reproduction process of these fish is also very unique. The male has an incubating pouch in which the female deposits the fertilized eggs.

BLACK-STRIPED PIPEFISH Syngnathus abaster

One of the slowest fish in the sea, the black-striped pipefish moves by means of slight undulations of its pectoral fins, which can vibrate up to 35 . times per second.

Classification

Thirty-two species of seahorse have been identified worldwide. Classifying them is at times complicated because individuals of the same species can change color and develop long filaments of skin. The size of adult seahorses varies enormously, from the tiny *Hippocampus* minotaur-a species discovered in Australia that never grows beyond 0.7 inch (1.8 cm) long-to the enormous Hippocampus ingens, a species in the Pacific that reaches over 12 inches (30 cm) long. It has no pelvic or caudal fins, but it does have a tiny anal fin.

WEEDY SEA DRAGON Phyllopteryx taeniolatus

Its shape is typical of this family, although its tail is not suitable for grasping, like those of seahorses are, and it has a more elongated profile. Its body is covered with seaweed.

SEAWEED The fish lets it stick to its body so that it can escape

Movement

ROLLED UP

into a curl.

The tail rolls up

The body of a seahorse is crammed into an armor of large, rectangular bony plates. They swim very differently than other fish. Adopting an upright position, they use their dorsal fin for propulsion. They do not have an anal fin, but rather a long tail that rolls into a spiral. They use it to hold onto underwater plants.

UNROLLED The tai straightens out by unrolling.

> With their long tails, seahorses can cling to plants on the seafloor.

> > Size

HEAD

EYES Large, for acute vision

NOSE Pipe-shap

giving the head a horselike

TAIL

Can be extended to a fully vertical osition

TRUNK

The body is

supported by the spina

Since they cannot use speed to escape from predators, seahorses and dragon fish use camouflage as a defense strategy. They change color to blend in with their environment, grow skin filaments shaped like seaweed, and use their heads to climb along the seaweed in which they live, swinging from one plant to another.

Caribbean, Indo-Pacific Ocean Habitat Number of species 35 7-12 inches (18-30 cm)

eahorses breathe rouah aills

35 species

of seahorses live in the Caribbean, the Pacific Ocean, and the Indian Ocean.

One on each side, for lateral

Reproduction

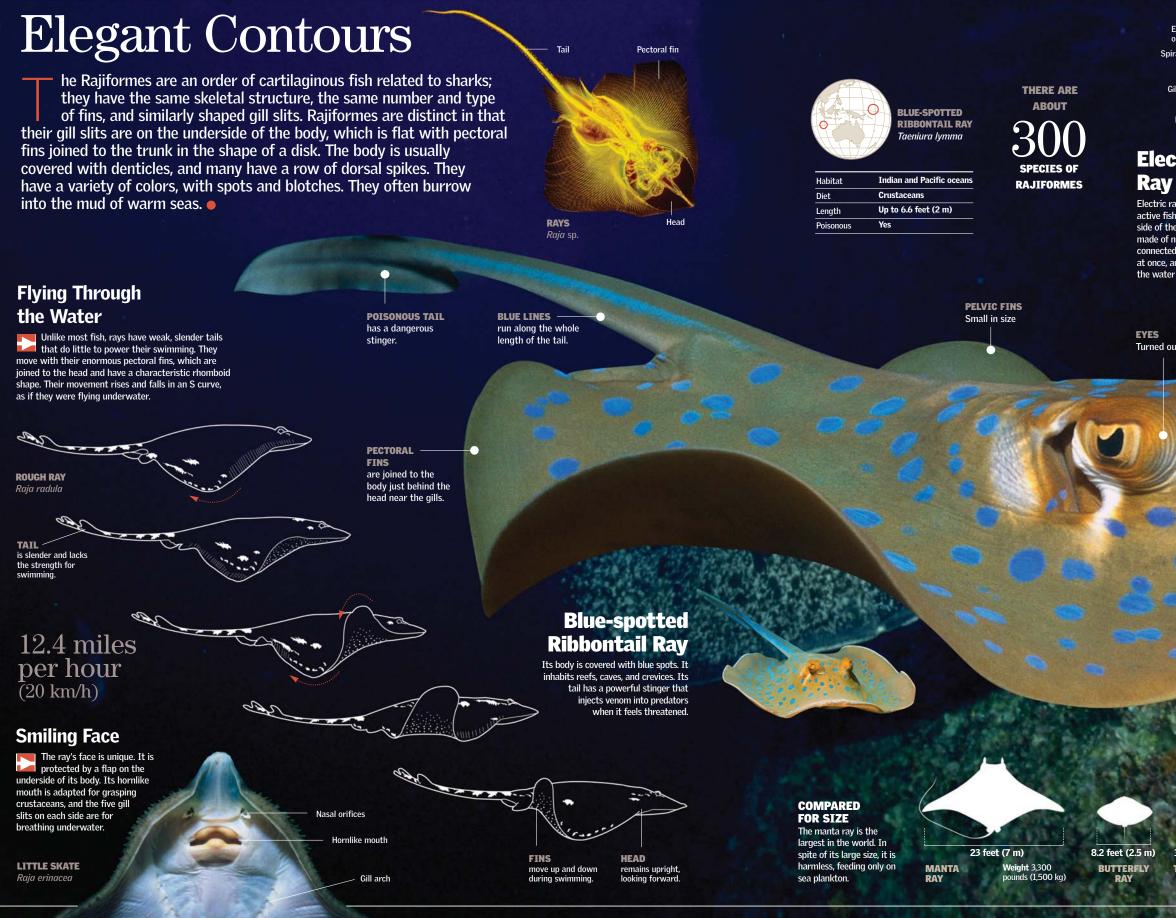
The male has an incubating pouch in which the female deposits her eggs. The sac closes, and the embryos develop, nourished by the male. He later expels the young, now mature and independent, through a series of contractions.

inch (1 cm)The size of a seahorse at birth

BONY PLATES Its body is covered with concentric rings of bone

DORSAL FIN Seahorses swim upright, propelled by their dorsal fin.

During the mating season the female lays burning the matting season the female (ays some 200 eggs in the male's pouch using her egg-depositing organ. There the eggs are fertilized. When the time for birth arrives, the male clings to seaweed with his tail.



The male bends his body backward and forward, as if having contractions. The sac's opening widens, and the birthing process Soon the young begin to appear

As the male's belly contracts, the y ally born. Each one orses are gradi 0.4 inch (1 cm) long. They begin to fee on phytoplankton right away. The ocess can last two days.

Electric organ Spiracle Gill arch Muscle

Electric

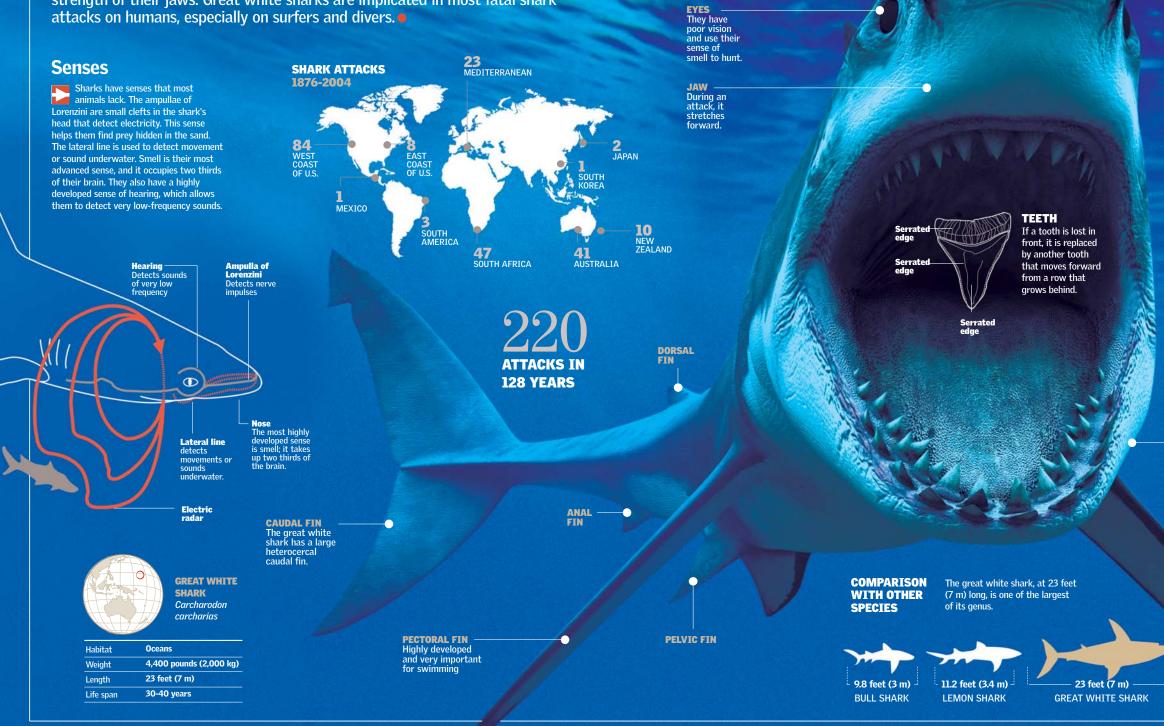
Electric rays (Torpedo sp.) are highly active fish with electric organs on each side of the head. Each electric organ is made of numerous disk-shaped cells, connected in parallel. When all the cells fire at once, an electric current is discharged into the water at 220 volts, enough to stun the prey.

Turned outward

TAIL WITH ELECTRIC CHARGE

> PECTORAL FINS Joined to the head

Row of teeth


3.3 feet (1 m) THORNBACK

Sawfish

Fish of the order Pristiformes have long bodies with an unmistakable face, adorned with 32 pairs of denticles on each side. The females give birth to 15 to 20 young, which are born with a protective membrane over their teeth to keep from hurting the mother.

Deadly Weapon

ne of the greatest predators in the ocean is the great white shark, easily identified by its distinctive white coloring, black eyes, and fierce teeth and jaws. Many biologists believe that attacks on humans result from the shark's exploratory behavior, because these fish often lift their heads above the water and explore things by biting them. This activity is often dangerous because of the sharpness of the sharks' teeth and the strength of their jaws. Great white sharks are implicated in most fatal shark attacks on humans, especially on surfers and divers.

SNOUT — Detects the odor of

NASAL

PITS

nearby prey

RAISED SNOUT

The head is raised and the jaws open.

THE JAWS ADVANCE

The shark grabs the prey with its teeth and holds it until it is dead.

REPLACEMENT

TEETH Sharks lose thousands of teeth throughout their lives, but each one is replaced with a new tooth.

New teeth

Jaw

The shark's jaws are made of cartilage instead of bone, and they are located underneath the skull. When the animal closes in on its prey, it raises its snout. The jaws slide forward, away from the skull, for a better grip. Most shark teeth have serrated edges for cutting flesh. The sharp points are for perforating, and the wide, flat surfaces are for crushing.

Throat

Time to Eat

ost fish feed within their aquatic environment. Some species, however, seek their food outside the water. The best-known example is the archerfish, which shoots streams of water from its mouth to knock spiders and flies off nearby plants and into the water. The African butterfly fish eats flying insects, which it traps after a brief flight. The river hatchetfish has a similar strategy: its long pectoral fins and flattened body enable it to make great leaps.

Archerfish

Seven species of archerfish live in the tropical waters of India and southeast Asia. They hunt using an unusual technique of spitting streams of water.

Technique The tongue presses upward against a groove in the roof of the mouth, forming a tube for emitting the stream of water.

Groove in root Movement of mouth of tongue inche

Angle of vision Archerfish have large eyes and excellent vision for hunting.

EXACT ANGLE OF VISION

The tongue acts

as a valve to keep the water

under pressure

position, it sees the prey well enough to attack it.

At an angle close to

90° to the surface

focuses on the prey.

of the water. it

In a vertical

5 feet (1.5 m) Range of the water stream for

an adult fish

4 inches (10 cm) Range of the

water stream for

a young fish

Leap

Not only can archerfish shoot their prey, but they can also leap out of the water and make the prey fall in order to eat it.

12 inches (30 cm)

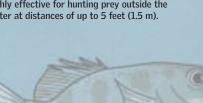
HEIGHT IT CAN REACH IN ONE JUMP

Its prey includes spiders as well as flies and other insects.

Warm the waters the

and the second second

Strategy


A SEARCH

The archerfish

looks upward in

search of its prev.

The carnivorous archerfish has developed a special strategy for hunting live insects, which is highly effective for hunting prey outside the water at distances of up to 5 feet (1.5 m).

vater

It looks at

shoots a stream of

the prey and

B SHOT When it finds its prey, the archerfish positions its body upright and shoots a stream of water at the target

devours it

C AIM If the first stream misses. the fish tries again and again

When the insect falls into the wate the fish

> 2.75 inches (7 cm)LENGTH OF THE HATCHETFISH

Archerfish

Toxotes jaculatrix

India, and northern

77-86° F (25-30° C).

Found in southeast Asia,

Australia, it lives in brackish

waters with temperatures of

Hatchetfish This carnivorous, freshwater fish comes from South and Central America. It swims in schools and can reach lengths of up to 2.75 inches (7 cm). It always swims very close to the surface. Its long pectoral fins and flattened body enable it to leap high out of the water.

The jaws of the archerfish play a vital role in the hunt.

Temperature of archerfish inhabits

The pectoral fins power its leap.

African Butterfly Fish

It inhabits pools and slow rivers in Africa, from Nigeria to the Republic of the Congo. The butterfly fish hunts in small groups near the shore, hiding among roots and floating plants. It uses its pectoral fins to "fly" out of the water to capture food or to escape from predators. It eats flying insects, which it traps on its short flights, and small fish.

6.6 feet (2 m)

28 LU 81

MAXIMUM LENGTH OF A LEAP

The pectoral fins serve as wings.

African butterfly fish Pantodon buchholzi

Large, well-focused eyes for effective huntin

Hatchetfish Gasteropelecus sternicla

The Journey Home

fter living in the ocean for five or six years, the Pacific red salmon (*Oncorhynchus nerka*) returns to the river where it was born to reproduce. The journey lasts from two to three months, and it demands a great deal of energy. The salmon must swim against the current, climb waterfalls, and evade predators, including bears and eagles. Once the salmon reach the river, the female lays her eggs, and the male fertilizes them. Typically, the same locations in specific rivers are sought year after year. This species of salmon dies after completing the reproductive cycle, unlike the Atlantic salmon, which repeats the cycle three or four times. Once the eggs hatch, the cycle begins anew.

MOUTH

During mating season, the lower jaw of the

male curves upward.

Red River The salmon returns to its birthplace to spawn. Males

have intense coloration with a green head.

ASIA 📃 ALASKA 📕 U.S..

The Route

There are six species of salmon in the Pacific Ocean and one in the Atlantic. The red salmon (*Oncorhynchus nerka*) migrates from the Pacific Ocean to the rivers of the United States and Canada on one side and to the rivers of Alaska and eastern Asia on the other.

3 months

ESTIMATED DURATION OF THE SALMON'S JOURNEY TO THE RIVER WHERE IT WAS BORN Stremuous Race Salmon swim upstream from the ocean to the river. On the way many fall prey to bears.

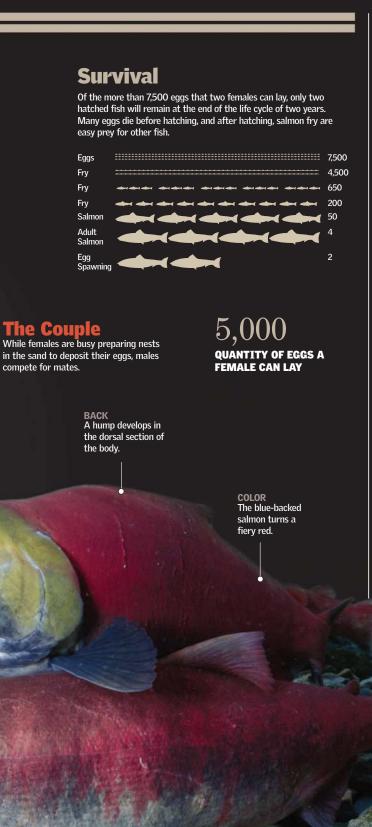
> strong currents can stop salmon in their journey.

5

Only 40 percent of the eggs laid each autumn hatch. The fry remain in the river for up to two years and then migrate to the ocean.

Neither waterfalls nor

Seen from above, salmon appear as a large red spot.


6-Year Cycle

LENGTH OF TIME FROM SPAWNING TO ADULTHOOD

Spawning The female deposits between 2,500 and 5,000 eggs in a series of nests. The male fertilizes them as they fall between the rocks.

Death Adult salmon die a few days after spawning, exhausted by the work they have done. Their bodies decompose along the river bank.

Habitat, Tastes, and Preferences

oet Fis Trum

Clo

Dolphin Fish

Red Starry

Sergeant Fish

he oceans cover 70 percent of the Earth's surface. That is where life began on this planet and where the most primitive species live side by side with the most highly evolved ones. This abundance of species is due in part to the wide variety of

environments found in the ocean. As one descends in depth, the water's temperature decreases, as does the amount of light. These factors determine different ecosystems, feeding regimes, and adaptation strategies among a wide variety of fish species.

Reserve of Life

Corals need warm water and lots of light. They are colonies of polyps that secrete a calcareous substance that form great reefs over the years. The resulting microhabitat harbors a great variety of species.

REEFS form only in verv shallow tropical waters.

0-650 feet

(0-200 m) Epipelagic Zone Algae and the animals that where photosynthesis is possible because of the

490 feet (150 m)

At this depth there is no plankton. Many species that live below this depth swim above it at night to feed.

650-3,300 feet

2,000 feet

(200-1,000 m)

Mesopelagic Zone Not enough light is found at this depth to llow algae to live

(600 m)

No light whatsoever

reaches this depth.

50 feet (15 m) Pearl divers

160 feet (50 m) Scuba divers

PLANKTON

Herbivorous fish can be found only in shallo waters because of the presence of plankton

1,300 feet (400 m)

3,300 feet (1,000 m)

3,000 feet (915 m) Barton bathosphere

5,000 feet (1,525 m) Submarine rescue vehicle

TO SEE

FATAL LIGHT

deep use their

Predators of the

attract their prey.

Marine Serpent

Sixgill Shark

Ocean Sunfish

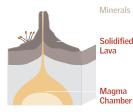
3,300-13,000 feet (1,000-4,000 m)

Bathypelagic Zone ne do so in complete bioluminescent, enerating their own light Temperature varies between 35° and 40° F (2° and 4° C).

Tiger Shark

Puffer Fish

At any given depth of the ocean floor, bottom feeders can be found wallowing in the mud searching for food


Butterfly Fis

Below 13,000 feet (4,000 m)

Abyssopelagic Zone There are some large fish with strong teeth and other species, such as sea sponges and starfish.

HEAT FOR LIFE

Volcanic vents are the only source of heat. They make it possible for the forms of life

Volcanoes In some abyssal plains volcanic phenomena take place that constitute a catalyst for life. Lava from the volcanoes cools quickly, solidifies, and forms chimneys around which an explosion of microscopic (bacteria) and macroscopic (infaunal worms) life occurs that can serve as food for various species of fish.

Gulper Eel

California

Slickhead

Footh

Toadfish

WITHOUT LIGHT

As a form of adaptation, the retinas of these carnivores are sensitive only to the color blue, which is the color that propagates best in water.

Spotted Eagle Fish

12,500 feet (3,810 m) Deep submergence vehicle Alvin

19,800 feet (6,000 m) MIR (Russia)

21,500 feet (6,500 m) Shinkay (Japan)

The Greatest Depth

The bathyscape Trieste holds the record for the maximum depth achieved by any submarine vehicle. In 1960 it descended into the Mariana Trench to 36,000 feet (10,911 m) below sea level and withstood the tremendous pressure at that depth.

36,000 FEET (10,911 M)

Danger in the Water

here are poisonous fish in all the seas in the world. The toxic substances they produce are usually not meant for threatening humans but for defending themselves from larger aquatic predators. Although some species of puffer fish have poisonous flesh, in Japan they are considered a delicacy when properly prepared.

A Swimming Fortress

Red lionfish, also called scorpion fish, are fascinating sea creatures found in aquariums all over the world. They belong to the family Scorpaenidae, which includes fish that have spines and venom, such as the spotted scorpion fish. The dorsal fin of the red lionfish has spines containing small sacs of potent venom, which it uses in self-defense. It has a long body with high, wide fins. The potency of the venom depends on the species.

RED LTONFTSH Pterois volitans

Habitat	Indian and Pacific oceans, Sri Lanka
Largest size	15 inches (38 cm)
Family	Scorpaenidae

LIKE A PEACOCK Lionfish are highly sought after for aquariums because of their attractive coloring. This one is spreading its pectoral fins like a peacock's tail.

> **TWO PECTORAL** SPINES Appendages below the mouth are used for attacking smaller fish or crustaceans by rushing against them head-on. When it sees potential prey, it pounces.

downward

THREE ANAL SPINES The first three spines of the anal fin point

,200 timesThe relative potency of the venom of a puffer fish compared with cyanide. This gives an idea of its killing potential.

Deadly Weapons

Each spine is covered from base to tip with a sheath. When the spine pierces, the pressure causes the poison gland within to release its contents.

THIRTEEN DORSAL SPINES

The fiercer the attack, the more damaging are the wounds they inflict. They can do worse damage if the spine breaks and sticks in the victim's body.

> The poison gland lies along the inside of a long central groove and is covered with glandular tissue that secretes the venom.

Spine of fin

Poisor

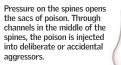
aland

CAUDAL FIN Its showy colors frighten predator species with the coded message: "I'm

Deadly Delicacy

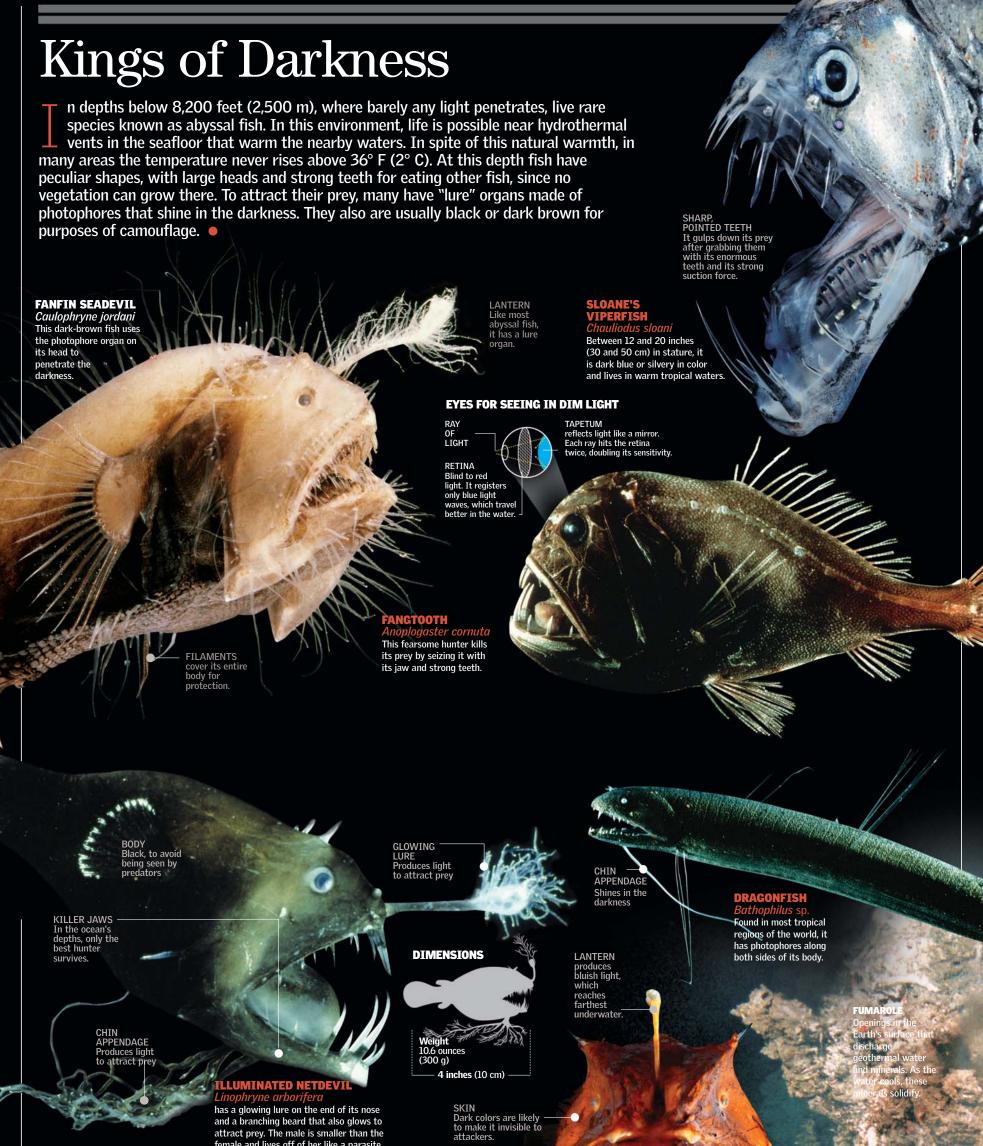
In Japan the fugu, or puffer fish, is a succulent but lethal delicacy. It contains tetratoxin, a deadly poison. Nonetheless, its flesh is so delicious that Japanese gourmets, even at the risk of their lives, consider fugu the king of fish. To prepare this high-risk dish, chefs must have a certificate from a special school that teaches the preparation of fugu.

> STOMACH When the fish takes in water, the stomach swells and causes the fish to expand.


INTESTINE The puffer fish's intestinal wall is also poisonous.

OVARY The most toxic of the internal organs

LIVER Highly poisonous; compressed when the stomach expands


Living Rock

Spotted scorpion fish belong to another group of the Scorpaenidae family. Buried in the sand along ocean beaches, their strong, thick spines can pierce footwear when stepped on. They can live up to four months eating only the fish that swim near their mouths.

Poisonous spines

SPOTTED SCORPION FISH Scorpaena plun

GLOWING LURE gives off light to attract prey.

TAILS AND FINS contain luminous cells.

ATLANTIC FOOTBALL FIS

The females can reach up to 24 inches (60 cm) long, whereas the males barely reach 1.6 inches (4 cm) long and live as parasites on their mates.

JMPBACK IGLERFISH 6 inches (15 cm) long. Its small fins are insufficient to enable fast maneuvering.

HYDROSTATIC PRESSURE The weight of the column of water. The pressure of the water increases with depth. In the Mariana Trench (the deepest undersea trench on the planet) ourser continuetor. planet), every square centimeter bears the weight of 1.2 tons (7.7 tons per square inch) of water.

feet (2,500 m)

Depth of water

1.3 cubic yards (1 cu m) of water = $\frac{1.1 \text{ tons}}{(1,000 \text{ kg})}$

> **TUBE WORM TENT** Tube worms have no nor d ve trac on or live inside the worms.

Sea Snakes

els (Anguilliformes), an order of ray-finned fish (Actinopterygii), are distinctive for their elongated, snakelike shape. In the past they were an important food source. There are about 600 species of true eels, including morays, congers, and snake eels. Eels come in a wide variety of colors and patterns, ranging from solid gray to mottled yellow. Their bodies lack scales and are covered with a protective mucous membrane. One of the most striking eels is the green moray, which lives in the Caribbean Sea and hides in coral reefs awaiting its prey. Although it is not poisonous, it is feared by divers because its bite can inflict grave wounds.

Weight 64 pounds (29 kg) 8.2 feet (2.5 m)

Green Moray

Weight

Unlike most fish, the moray has no scales. It excretes a slippery film to cover its thick, muscular body and protect itself from parasites. The moray hunts at night and detects its prey with its excellent sense of smell.

64 pounds (29 kg)

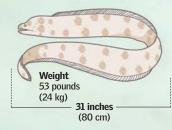
CONGER Conger conger There are 100 species of congers. This one is dark gray.

> Weight 143 pounds (65 kg) 8.9 feet (2.7 m)

VISION Very poor

SMELL Highly developed. This sense is used to detect prey.

Upper jaw — has a double row of teeth.


Lower jaw has only one row of teeth.

27 Total number of teeth

BLUE RIBBON EEL

Rhinomuraena quaesita inhabits the waters of the Indian and Pacific oceans and feeds on small fish. Females have a yellow dorsal fin.

FINLESS Its elongated, muscular body lacks pectoral and pelvic fins. Its long dorsal and anal fins however, end in a short tail fin.

FISH AND AMPHIBIANS 57

How It Attacks Its Prev

Hiding place It lives in crevices and caves in coral reefs, where it peers out, waiting to pounce on its prey.

Attack At night it detects its prey (fish and octopuses). It traps them with its sharp teeth, which slant backward to keep the prey from escaping.

It slashes the prey with its

It crushes the

prey with its body.

After gulping dow the animal whole, the eel forms two curls with its body to crush and flatten the prey in its digestive tract.

> 600 species of eel exist in the world.

> > Its two-colored body lacks scales.

Weight 8 pounds (3.6 kg)

40 inches (1 m)

Its dark-brown and yellow body is covered with a protective mucous layer

Out of the Water

2 HEAD FIRST

Some species of fish can breathe and live out of the water. They include the mudskippers in southeast Asia, which can stay on muddy flats and even climb trees. To breathe, they need only their skin to stay moist, thanks to the function of certain cells in their skin. A few other species still have rudimentary lungs like those of the first aquatic animals that colonized dry land.

Fish with Lungs

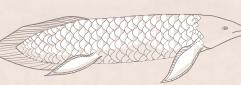
Lungfish have rudimentary lungs that originate from a connection between the swim bladder and the esophagus. This allows the swim bladder to function using air when the fish leaves the water. Depending on the species, the fish can breathe air occasionally or even indefinitely. Many varieties of these fish have been found in fossil form all over the world, which indicates that they were very widespread

during the Mesozoic Era. They were probably the first vertebrates to develop lungs. Howeve lungfish species are found in only three areas today, all in freshwater environments.

9 months

Length of time certain lungfish can live buried in the mud

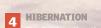
1 WATER LEVELS DROP The fish looks for an area with soft mud under the water, where it can easily dig itself a burrow.


In the Mud

When the dry season arrives, and rivers and ponds dry up, both the African and South American species of lungfish dig holes in the mud along the shore and bury themselves. They then reduce their metabolic functions to a minimum and burn as little energy as possible until the waters rise again.

WEST AFRICAN LUNGFISH

has fleshy fins that look like limbs and three external gills. In the dry season it secretes a substance for covering itself. It can remain in this state for up to a year


3 TURNING AROUND

The lungfish curls in on itself with its head up. Before the water level drops, it seals the entry with a plug of clay

> Some water is still left in the pond.

SOUTH AMERICAN LUNGFISH

two or three small holes i the plug. Its bodily functi are reduced to a minimum

> The water has receded

MOUTH AND THROAT

EYES

FINS

used for Waiking and jumping when outside the water, they even enable the fish to climb trees. In water, the fish crawls along the

VENTRACIONS Modified fins a as a lever for th fish to lift itself onto roots and tree trunks

58 DIV

GILLS

WATER RESERVES

ed in a type or / that contains water and air. can absorb air as

Atlantic Mudskippers

These are the only water-dwelling fish that can adapt to a completely amphibious lifestyle. What's their secret? They accumulate water in their skin and in several special chambers near their gills, which enables them to use their gills outside the water. They live on the coasts of the Indian and Pacific oceans, in southeast Asia, and on the western coasts of Madagascar. They usually swim in shallow waters, holding onto roots and seaweed and raising their heads out of the water. They move about easily on mud and dry land, and they can ever climb trees. They can breathe air or water equally well.

SKIN

The skin is a respiratory organ and needs to be kept moist. The skin cells are able to accumulate water.

MUSCULATURE

it to jump in the mud. This gives the fish its common name.

Habita

Family Length ndian Ocean and the acific coasts of Asia obidae

Amphibians

POISONOUS FROG Frogs of the genus Dendrobates secrete a special type of poison that attacks the nervous system.

ew groups of amphibians have generated as much scientific interest as frogs of the genus *Dendrobates*, which produce toxic secretions through their skin. All frogs of this genus have spectacular coloring to warn their predators of the danger. One of the most important traits of amphibians (newts, salamanders, frogs, toads, and caecilians) has been their conquest of land. This completely transformed the extremities of these animals, allowing them to move on land instead of swimming. They also had to adapt to

DISTANT KIN 62-63

BETWEEN LAND AND WATER 64-65AXOLOTL 74-75JUMPING ATHLETES 66-67A VERY PECULIARDEEP EMBRACE 68-69NEWTS 78-79METAMORPHOSIS 70-71

POISON IN COLOR 72-73 AXOLOTL 74-75 A VERY PECULIAR TAIL 76-77 NEWTS 78-79

take in oxygen through their skin and lungs. Here you will also discover how frogs and toads reproduce and how newts feed, among other curious facts.

Distant Kin

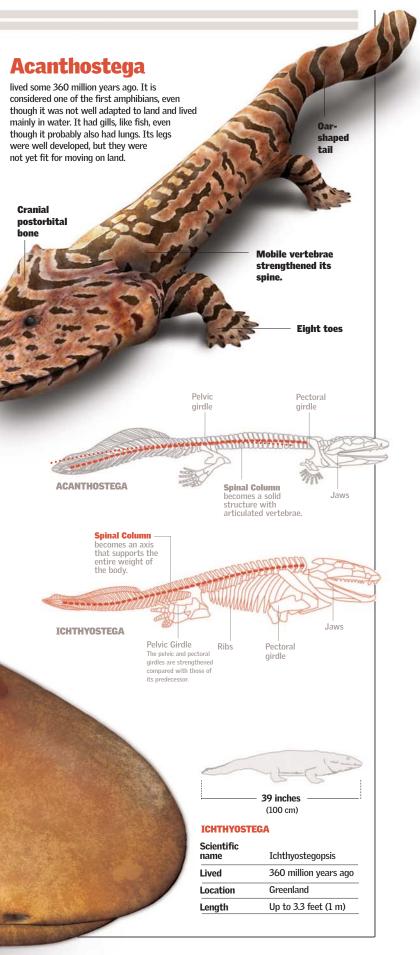
he first amphibians evolved from fish with fleshy, lobed fins that resembled legs. They may have been attracted to land as a source for food, but the most important reason for their leaving the water was the instability of the Devonian Period, which drastically affected freshwater environments. During long droughts, the fish used their fleshy fins to move from one pond to another. Oxygen availability was also affected, and this led to more organisms being able to breathe oxygen from the air.

Still has the form of a fish fin

ΤΔΤΙ

They had scales all over their body, just like fish

Prefronta


SCALES

The Skeleton

In the steps from their first aquatic habitat to land, the first amphibians had many characteristics in common with fish, such as a typically wide tail. They looked clumsy, with short limbs. The first four-legged animals had no competition on land. Everything that is needed to live on land has its evolutionary roots in fish.

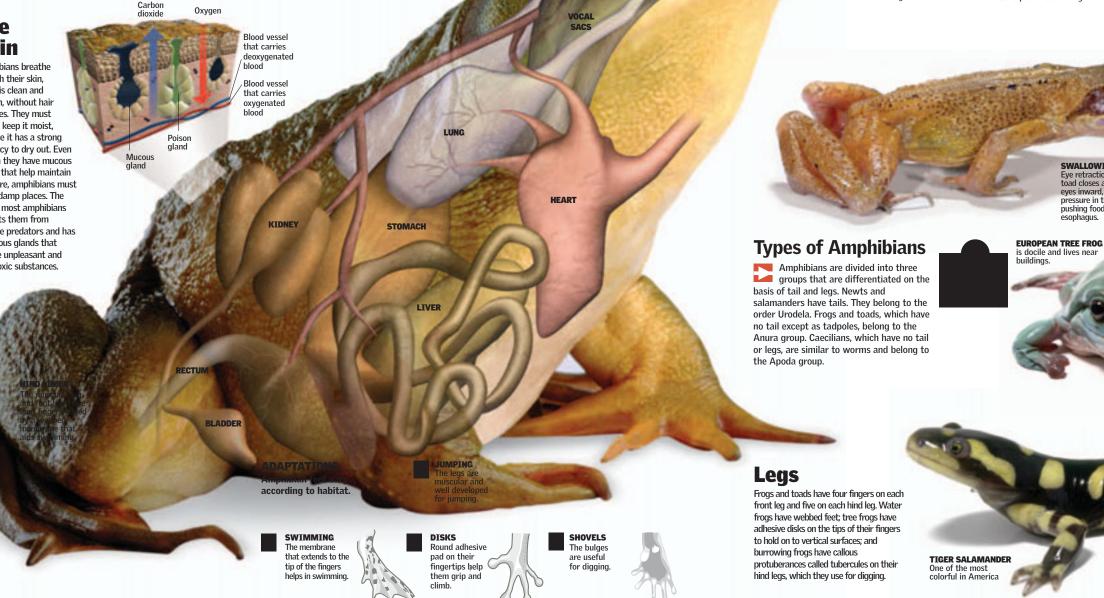
> HEAD Its structure retains the opercular bones

Legs: Evolution In 2004, American paleontologist Neil Shubin of the University of Chicago offered the scientific community a complete description of a humerus bone that was 365 million years old. The first tetrapods adapted to land exhibited a great variety of leg **GLYPTOTEPIS** shapes, sizes, and strengths. After comparing this fossil with that of other LEGS Rays of skin tetrapods, scientists concluded that the They were very evolution of the legs and of the muscles similar to necessary for walking began in the aquatic vertebrates water. **Tiktaalik** EUSTHENOPTERON Radius A lobe-finned fish from the late Devonian Period, with many tetrapod characteristics. It lived 375 million Rays of skin years ago. Some paleontologists suggest that it was another intermediate form between fish and amphibians. PANDERICHTHYS ally or ACANTHOSTEGA Eusthenopteron A relatively large fish, about 29 inches (75 cm) long. **ICHTHYOSTEGA** Many features of its skeleton were similar to those of the first amphibians; it had a cranial pattern similar to Acanthostega and Ichtyostega. The skeleton of its fins included a humerus, ulna, and radius in the front Humerus fin and a femur, tibia, and fibula in the pelvic fin. Ulna Radius Seve toes Three-lobed tail Pelvic fin Muscled pectoral fin

Between Land and Water

s indicated by their name (amphi, "both," and bios, "life"), these animals lead a double life. When young, they live in the water, and when they become adults they live outside it. In any case, many must remain near water or in very humid places to keep from drying out. This is because amphibians also breathe through their skin, and only moist skin can absorb oxygen. Some typical characteristics of adult frogs and toads include a tailless body, long hind limbs, and large eyes that often bulge.

Amphibian Anatomy


Amphibian anatomy has several peculiarities. Larvae, such as tadpoles, have a respiratory system with gills. Most species develop lungs when they reach adulthood. They also have a trachea, pharynx, and saclike lungs, even though skin breathing is at times more important than lung breathing. The heart has two auricles and one ventricle, and the digestive and excretory systems are similar to those of mammals.

VOCAL SACS

Both toads and frogs sing. Even though the sound is produced by their vocal cords, in males the sound is amplified by means of inflatable sacs on each side of the larvnx.

The Skin Amphibians breathe through their skin,

which is clean and smooth, without hair or scales. They must always keep it moist, because it has a strong tendency to dry out. Even though they have mucous glands that help maintain moisture, amphibians must live in damp places. The skin of most amphibians protects them from possible predators and has poisonous glands that secrete unpleasant and even toxic substances.

Differences **Between Frogs** and Toads

EYES Soft and smooth, with strong, Frogs have horizontal bright color nunils

It is very common to use "frog" and "toad" as synonyms or to think that the frog is a female toad. However, frogs and toads are quite different. Toads have wrinkled skin and short legs, and they are land animals. Frogs are smaller, have webbed feet, and live in the water and in trees.

REED FROG Hyperolius tuberilinguis

POSTURE Toads are terrestrial species, slow-moving and wider than frogs. Frogs live mainly in water, which is why they have webbed toes adapted for swimming

LEGS are long and are adapted for jumping. Frogs have webbed toes to help with swimming.

FISH AND AMPHIBIANS 65

EYES

The pupil is usually horizontal, though some toads have vertical pupils.

SKIN The skin of a toad is wrinkled, hard, rough, and dry. It is also used as leathe

> COMMON TOAD Bufo bufo

LEGS are shorter and wider than those of frogs and are adapted for walking.

SWALLOWING Eye retraction, where the toad closes and turns its eyes inward, increases th pressure in the mouth pushing food down the

esophagus.

Nutrition

is based on plants during the larval stage, whereas in the adult stage the main food sources are arthropods (such as insects of the order Coleoptera and arachnids) and other invertebrates, such as butterfly caterpillars and earthworms.

The Frog

Its large eyes help it to locate

prey easily. The eyes have lids

that protect them from particles in

The frog's smooth skin has glands

or irritating substances. The frog

It has a large tympanum, or

may not have teeth.

breathes through its lungs and skin.

eardrum, visible on each side of the

head and a wide mouth that may or

the air or help them see underwater.

that moisten it or that secrete toxic

Jumping Athletes

mphibians of the order Anura are known for their ability to jump high and far. This group includes frogs and toads, and their anatomy helps them to jump. Frogs use their jumping ability to escape from their many predators; they can jump a distance equivalent to 10 to 44 times their body length. When they feel threatened, they can choose to jump into the nearest body of water, where they hide, or they can jump erratically on land to confuse their attacker.

Jumping

Before the jump begins, the frog

and presses its feet against

the ground. As the frog

jumps, the legs extend

to propel the body

forward.

tenses the muscles of its hind legs

Feeding

Amphibians from the order Anura have a varied diet. They feed on insects and small invertebrates such as earthworms, snails, crustaceans, and spiders. Tadpoles are herbivores.

VISIBLE HUMP

HOW IT FEEDS

1 Adhesion The insect adheres to the tip of the tongue, which is sticky.

Insects found on

plants are the favorite . meal of frogs.

2 No escape The tongue folds back into the mouth, carrying the insect with it.

> FOREFEET have four fingers and are not as strong as the hind feet.

At this moment, when the frog extends its hind legs, it not only reduces air resistance but also helps with the entry into the water.

> It lands with its

EYES

shut.

THE JUMP The toad's jump covers less distance because of its greater weight and because its legs are not as flexible as those of the frog.

The hind	It closes its
legs boost	eyes for
the jump.	protection.
and the second division of the second divisio	and the second se

ASIAN

HIND FEET

have five

webbed toes.

LEG MUSCLES

tense to carry out the jump.

The Toad

Having characteristics similar to those

of frogs, toads can be distinguished by

only a few features. Generally, toads are

of frogs to prevent drying, and toads are normally covered with warts.

larger, less stylized, and better adapted to living on land. Toads' skin is thicker than that

EDIBLE FROG Rana esculenta

Fall

TREE FROG Pedostibes tuberculosus

STRETCHED-OUT

BODY

is found in Europe and also in the United States, Canada, and Asia.

Each hind leg extends like an arrow.

AT THE TOP

The white-lipped tree frog (Litoria infrafrenata) has a maximum length of 3.9 inches (10 cm) and is adapted for mountain climbing, jumping, and moving on flat areas. The pads on the tip of each finger and toe allow it to adhere to many surfaces.

The toe has a sticky mucous coating.

WHITE-LIPPED **TREE FROG** Litoria infrafrenata

9 VERTEBRAE Aside from these, it has a urostyle—a cylindrical bone that results from the fusion of vertebrae.

17.5 feet (5.35 m)

DIVE The body curves upward when it enters the water. 67

Deep Embrace

eproduction by amphibians is usually carried out in the water, where the female deposits the eggs, despite the fact that some species are able to deposit eggs on land. The most favorable time for this activity is during the spring, when the male sings to make his presence known. During mating, also called amplexus, the male positions himself on top and fertilizes the eggs as they come out. Then gelatinous layers absorb water and increase their volume, binding the eggs together in large masses.

A ROMANTIC SONG The call that a male makes to mate with a female

Responsible Parents

Some males of frog and toad species play an important role in the protection of the eggs laid by the female. They pick up the eggs and help the mothers, and some even carry the eggs with them until the birth takes place.

EUROPEAN MIDWIFE TOAD Alytes obstetricans

SURINAM TOAD Pipa pipa

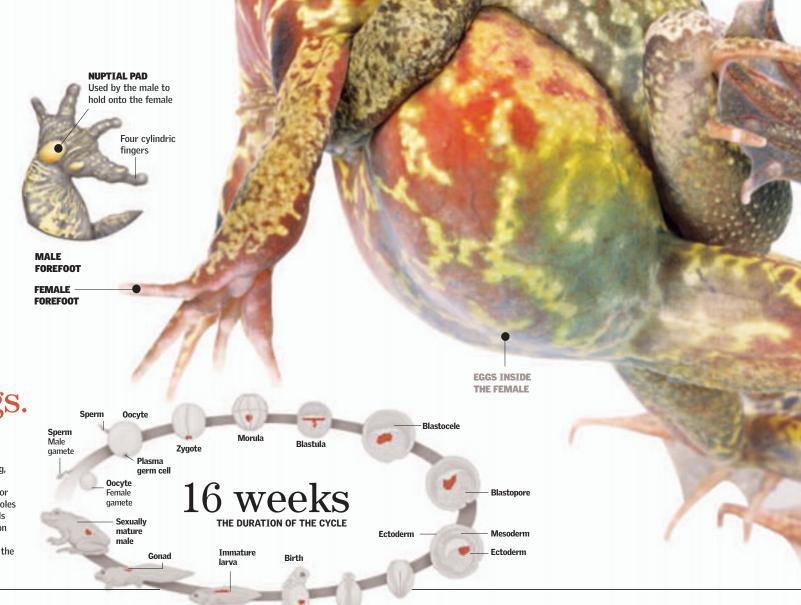
THE FEMALE

lays the eggs in a string.

Amplexus

Fertilization for the majority of amphibians is external. In this hazardous process, the male, embracing the female in amplexus, discharges spermatozoa while the ovocytes are released. Both are released in great numbers in order to ensure the success of the process. This mating embrace can last from 23 to 45 minutes.

larger than males. Weight 1.7-5 ounces (50-100 q)


Carnivorous Diet Reproduction Oviparous Season Spring

SOME ANURANS CAN LAY UP TO

LIFE CYCLE

The three stages of the life cycle are egg, larva, and adult. The embryos begin to develop within the eggs; then, after six or nine days, the eggs hatch, and tiny tadpoles with spherical heads, large tails, and gills emerge. Once the gills pass their function over to the lungs and the tail of the amphibian has shrunk and disappeared, the young frog enters the adult stage.

FISH AND AMPHIBIANS 69

The male winds up the string of eggs that the female has laid over his hind legs. He carries the eggs for a month, provides them with a moist environment, and leaves them in the water so the young can swim away.

35-60 THE NUMBER OF EGGS THE TOAD CAN CARRY ON HIS BACK

> Inside of the egg

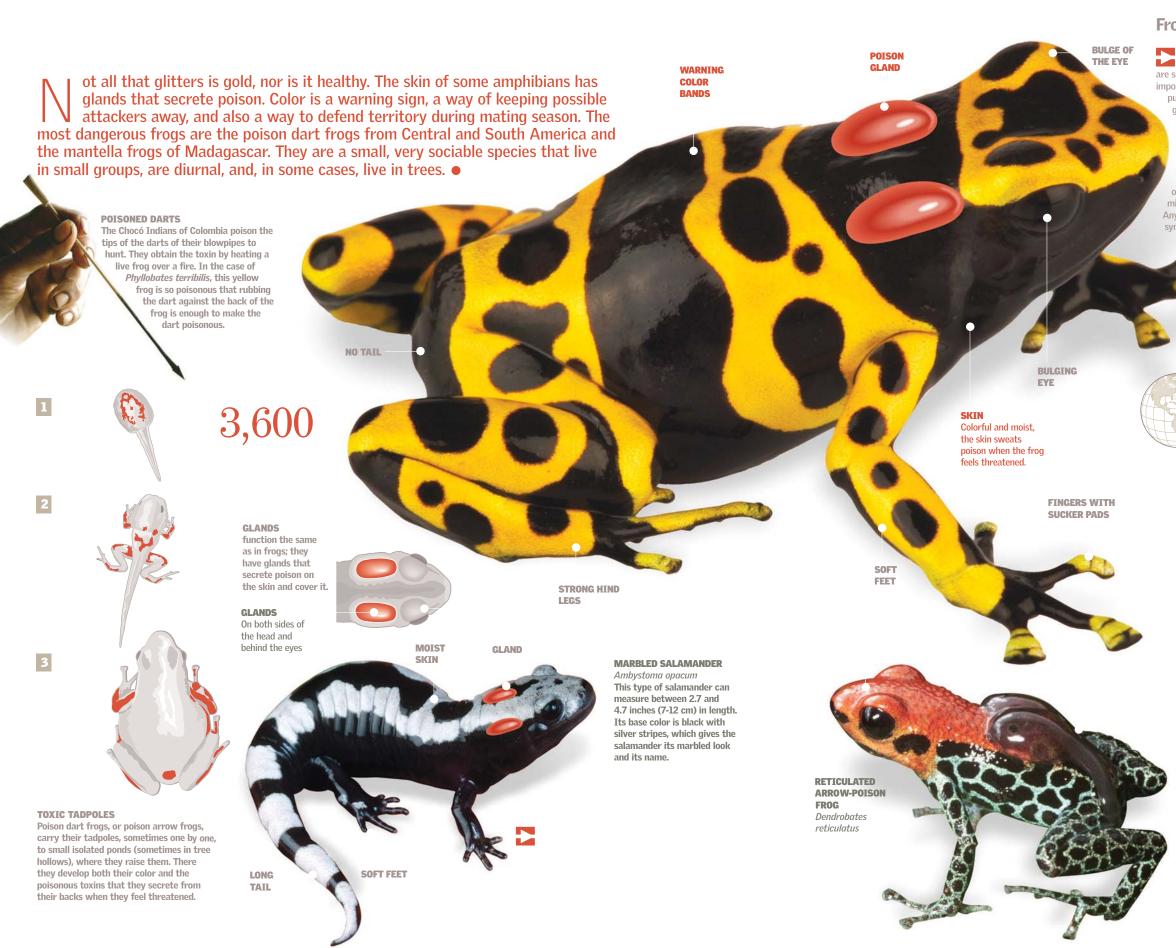
> > The tadpoles are born in the water.

The young are identical to their parents.

The female goes around in circles,

releasing one egg each time. The male places the egg on the female's back, and she covers them with her swollen skin to protect them until they hatch

Release of the tadpoles


> The tadpoles absorb oxygen

HINDFEET

Hatchi

Frogs and Mantellas

The secretions of all dendrobate frogs are poisonous, but only a very small number are sufficiently toxic to kill a person. The most important toxins are batracotoxins, pumiliotoxins, histrionicotoxins, and gephyrotoxins. The batracotoxins affect the nervous equilibrium of the body and cause arrhythmia, fibrillation, and cardiac arrest. On the other hand, pumiliotoxins cause motor difficulties, partial paralysis of extremities, salivation, convulsions.

and, finally, death. These amphibians obtain their poison from their diet: certain millipedes and coleopterans, as well as ants. Any insect that feeds on plants that synthesize alkaloids and is then ingested by a

poisonous frog provides the frog with poison.

GREEN AND BLACK POISON DART FROG Dendrobates auratus Spotted body and variety of colors

COSTA RICAN VARIABLE HARLEQUIN TOAD *Atelopus varius* Regular red spots

Lethal

TINY PERIL

The golden poison dart frog is one of the most poisonous animals on the planet. It can kill 10 human beings with the quantity of poison it stores.

BLUE POISON DART FROG Dendrobates azureus The color is bright blue.

THE COLOR OF POISON In nature, bright, flashy colors usually serve as a warning sign to predators. Thus, a frog can use color to defend its territory from other males during mating season.

74 AMPHIBIANS

Axolotl

his plump amphibian is a classic example of neoteny—the ability to reproduce without developing completely into an adult. The axolotl has a flat tail and large external gills, which most salamanders lose when they reach maturity and begin to live on land. The axolotl is mostly nocturnal and feeds chiefly on invertebrates. It, in turn, can wind up as the prey of a water bird. The axolotl was once considered a delicacy, but it is now legally protected.

AXOLOTL Ambystoma mexicanum

Habitat Mexico (Lake Xochimilco)

Life Cycle

The female lays a large number of eggs. The time of incubation depends largely on the temperature. At 60° F (16° C), incubation averages 19 days. At the age of six months, the animals are very active swimmers. They reach sexual maturity at one year of age and adult size at between two and three years, never losing certain anatomical and physiological traits of the larval stage.

ADULT At two or three years of age

FULL-GROWN

.....

LAKE

XOCHIMILCO is the only place on

the planet where

the axolotl is found

in the wild.

LARVA

Neoteny

Latitude 19° 30 One of this animal's notable traits is neoteny—that is, reaching sexual maturity while in a larval stage, never experiencing metamorphosis. Neoteny is caused by low levels or the complete absence of thyroxine as the result of a low-functioning thyroid gland. In axolotls, thyroxine can be generated under experimental conditions by administering iodine.

> 12 inches (30 cm)

> > An adult axolotl can be 10 to 12 inches (25-30 cm) long.

Regeneration

Another trait of the axolotl is its outstanding ability to regenerate its extremities and other parts of the body, including parts of its head. It can regenerate itself through the proliferation of stem cells in the affected area. These cells multiply and differentiate to replace the missing tissue. Interestingly, the ability to regenerate is shared by other amphibians of the order Urodela.

Mythology-

In Aztec mythology, the axolotl (*atl* means "water" and *xolotl* means "monster") is the aquatic form of Xólotl, the god for which it is named. Xólotl feared death, refused to accept it, and sought to escape it using his powers of transformation. The legend recounts that, to flee Death, he ran to the water, where he became the fish called axolotl. This action becomes his final metamorphosis, because Death finally finds him and kills him.

EXTERNAL GILLS

are a trait that most salamanders lose when they reach maturity and begin to live on land.

OLORS

Usually they are dark brown with white spots. In captivity or in their natural environment, some are albinos with red or gray gills.

SKIN

Unlike salamanders and other metamorphosed amphibians, axolotls do not shed their skin.

XTREMITIES

The extremities are fragile and delicate. In albinos, the bones can be seen through the thin, transparent skin. Axolotis have four toes on each front foot and five on each hind foot.

A Very Peculiar Tail

he salamander is an animal of the order Urodela that needs damp places to survive. It lives in a very limited range of areas, and it is highly sensitive to modifications in its natural habitat. Unlike frogs and toads, the salamander keeps its tail when it reaches adulthood. The tail makes up nearly half the length of its body. Salamanders, especially adults, are completely nocturnal. Their movements are slow when they walk or crawl along the ground. During the day they stay hidden under rocks, in underground burrows, and on tree trunks.

COMMON

SALAMANDER

Salamandra salamandra

HUMIDITY is necessary for breathing through the skin.

The head is narrow, with the mouth and eyes smaller than those of frogs and toads. However, in comparison with frogs and toads, the salamander's body is longer, but its feet are similar in size and length. The salamander walks slowly, never reaching great speeds, and its limbs are at a right angle to the body.

> TAIL The salamander has a tail, unlike frogs and toads, which lose their tails on reaching adulthood

BODY

Long, with 16 to 22 thoracic vertebrae, each one with a pair of ribs.

HEAD Its head is smaller than those of frogs and toads because of the loss of bony structures and the presence of cartilage.

FEET Salamanders have four toes on each foot. The salamande nes its body forward by ng against the ground

On the back and sides, the

skin is smooth and shiny. On the throat and belly,

the yellow spots are duller and less numerous

Life Cycle

There are three stages to the life cycle: egg, larva, and adult. The eggs vary in size depending on the species. Larvae have feathery external gills. Metamorphosis lasts until adulthood, when the salamander loses its gills and switches to breathing with lungs.

55 years LIFE SPAN OF SOME SPECIES

The body grows longer; the salamander begins to breathe through the

CHANGE

skin and lungs.

LARVA Metamorphosis begins; the salamander loses its gills and switches to breathing air.

arge and bulging, ith a dark-brown iris

The tongue muscles retract.

Outer section of the tongue

> Retractor muscles

Feeding Habits

CWith its long tongue, the salamander can trap its prey in a flash and quickly gulp it down. These carnivorous animals use mainly sight and smell to hunt. Because they are not very active, salamanders need relatively small amounts of food. If they obtain more food than necessary, they store it as fat for lean times.

Defense

ITALIAN

The Italian spectacled salamander has two ways of avoiding its enemies. It plays dead, or it curls its tail forward. Other species defend themselves by using a toxic substance produced by glands or by breaking off the tail, which continues to move on its own and confuses the predator.

EGG

a larva

Hatches into

1

GESTATIONAL PE

SALAMANDER

The start

is known for having the longest gestation period of all animals, ven longer than that f elepha<u>nts</u>.

Newts

long with salamanders, newts are the most primitive of terrestrial vertebrates. Of the three main surviving groups of primitive amphibians, newts most closely resemble the animals from which all amphibians are descended. Some of their habits are also more complex and varied. Most of the time they live on land, but during the mating season they return to the water. Unlike frogs and toads, newts and salamanders keep their tails as adults. They are found in temperate regions of the Northern Hemisphere.

Courtship and Reproduction

Courtship and mating involve a showy exhibition by both male and female. The male must find a female of the same species and bring her a packet of sperm, which he deposits on the ground or in a pool. Fertilization is internal, and the female gathers the packet into her cloaca.

DANCE

Males are attracted by the female's belly, swollen with eggs. The males draw her attention with their showy pigmentation and the flexible crest along their back and tail.

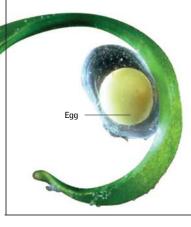
The male swims in front of the female, displaying

CONNECTION

cloacal glands.

EXHIBITION

his nuptial attire. He


on his back and slaps

secretions from his

raises the toothed crest

his tail while producing

The male deposits his packet of sperm and then gently guides the female toward it, pushing her with his side The female gathers the packet into her cloaca.

EGG LAYING After the eggs are fertilized, the female finds a place to deposit them, attaching them to underwater vegetation or rocks

Habitat Northern Hemisphere 360 Number of species Urodela Order

Newt Species

EASTERN NEWT

Notophthalmus

The larvae go

special juvenile

'red phase.'

stage called the

viridescens

through a

Amphibians are divided into three groups, distinguished by their tails and legs. Newts and salamanders have tails and belong to the order Urodela. Some produce toxic substances for defense from predators. They are very small; the largest newt may reach 6 inches (15 cm) in length.

> Triturus cristatus spends from three to five months of the year in the wate

FRONT FEET

Newts have four

toes on each of

their front feet.

Anatomy of a Newt

Newts, unlike salamanders, have no grooves along their sides. Adults have elongated bodies 3-4 inches (8-10 cm) long, with well-developed tails. They have four limbs, with four toes on each front foot and four or five on each hind foot. Another peculiarity is that they have teeth in both upper and lower jaws. Their heads and eyes are relatively small. Smell is their most important sense for finding food and for social interaction.

> PALMATE NEWT TRITURUS HELVETICU 3.5 inches (9 cm) long, with a pale belly

> > BELLY A white or pale belly is one of the distinctive traits of this species.

GREAT CRESTED NEWT

Males have a crest, and females have only a yellow stripe along their backs

DEFENSE

Some newts are highly dangerous because they release a toxic substance when attacked. One such species is the California newt. It can be recognized by its bright coloring, which serves as a warning to predators.

MARBLED NEWT Triturus marmoratus spends its whole life in the water, both as a juvenile and as an adult

FISH AND AMPHIBIANS 79

ΤΔΤΙ Newts keep their tails as adults.

Feeding

Like salamanders, these tiny animals are usually active at night. The smallest newts feed on small invertebrates, whereas larger newts can eat fish, amphibians, and eggs.

> HIND FEET The hind feet are webbed in males but not in females.

NEWTS AND WATER

As semiaquatic creatures, newts return to the water during mating season. They are found in North America, Europe, all of continental Asia, and Japan. Adapted to various habitats, they climb trees and dig in the ground in addition to living in the water.

SMOOTH NEW1 Triturus vulaaris One of the most colorful

People, Fish, and Amphibians

SALMON FISHING The salmon industry has become a true economic and social phenomenon.

he future of many fish and amphibians is uncertain because some species face fishing nets, loss of habitat, and the invasion of species

cultivated by humans. In other areas acid rain is affecting the wildlife of lakes, rivers, and oceans. Fish in particular are very sensitive to chemical substances in the water. As for the world population of

amphibians (more than 5,000 species of frogs, toads, salamanders, and caecilians), one third of all species are endangered. Even though experts identify loss of habitat as the main

MYTH AND LEGEND 82-83 LARGE-SCALE CATCH 84-85 LURE, FLIES, AND BAIT 86-87

ENDANGERED SPECIES 88-89 DRAMATIC DECLINE 90-91

culprit, it is possible that a little-known aggressor—a recently identified illness caused by a chytrid fungus—could be the quickest killer of all. Many similar facts and figures are quite surprising.

Myth and Legend

ods, demigods, princes in disguise, and religious symbols. In the field of myth, fish and amphibians embody powerful, mysterious forces of nature. Because they are aquatic, these smooth-skinned creatures are associated with "primordial waters." Thus, they symbolize the origin of life and resurrection. Through ancient texts, artifacts, and murals, we know that throughout history, many of these creatures have been regarded as supernatural and auspicious.

Frident The symbol of sea gods. Poseidon could crumble cliffs or calm the ocean's water with one blow from his trident, as with a magic wand.

Greek

The Greek gods of the sea represent the most elementary forces of nature. The Greeks are known for originating many myths, such as that of Poseidon (Neptune in Roman mythology), a brother of Zeus and son of Cronus and Rhea. Not only did Poseidon have power over the waves, but he could also unleash storms, smash cliffs, and cause springs to burst forth from the ground. The sovereign of the seas, he was portrayed holding a trident, a tool used by tuna fishers, and riding a chariot, surrounded by various fish and sea animals. His son, fishtailed Triton, could control the waves by blowing a conch shell. Other sea-dwelling creatures included the Nereids (with bodies covered in scales) and the seductive mermaids, who captivated mortals.

FISH IN RELIEF A mural featuring fish in bas-relief, a sample of symbolism from the early Christians

The Americas

Challwa is the Quechua name for fish in Andean traditions. In the beginning there was not a single fish in the sea, because fish belonged exclusively to the goddess Hurpayhuachac, who raised them in a small well in her house. Once the god Cuniraya Viracocha, who was courting one of Hurpayhuachac's daughters, became angry with the goddess and threw her fish into the ocean. In that instant the oceans were populated, and humankind was now able to rely on this new source of food. A few fish keep sacred characteristics. An example is the golden croaker, which some peasants claim to have spotted at Lake Orovilca in Ica. In Central America, the Maya included the toad in the Popol Vuh, or Book of Creation. The axolotl takes its name from the god Xólotl ("monster" in Nahuatl), whose feet were backward.

the brother of Quetzalcóatl The axolotL Ambystoma mexicanum, is an nibian native to Mexico that has divine origins according to the

Christianity

The fish is one of the most

early Christians. It may have been inspired by the miraculous multiplying of the loaves and fishes or by the meal shared by the seven disciples on the shores of the Sea of Galilee after the resurrection. But its popularity would seem to stem from the well-known acronym of five Greek letters that spell the Greek word for fish: ichthys. These words briefly and concisely describe Christ's character, as well as the Christians' beliefs about Him: Iesous Christos Theou Yios Soter-that is, Jesus Christ, Son of God, Savior. It is believed that the early Christians traced two concave lines in the sand, which crossed to form a fish. The anchor, closer to a cross, was also used as a symbol.

important symbols used by

EARLY CHRISTIANITY Basilica of Aquileia Detail of a fish in one of its mosaic

floors

GREECE Poseidon (Neptune) waves as

Egyptians

Egyptian life revolved around the Nile River, which was considered the source of life and the sole basis for the existence of this ancient civilization. The river ensured harvests and provided a habitat for many types of small animals, including frogs and snakes. In mythology, this pair of gods (Khnum and Naunet) represent the primordial waters.

China

According to Chinese mythology, the half-human and half-amphibian couple Fu Hsi and Nü Kua founded the Chinese civilization after a great flood in the year 3222 BC. Fu Hsi is also considered the originator of the I Ching.

CHINA Lacquer tray from the Qin dynasty, with fish motif

The Frog Prince

Throughout history, the toad has been regarded as a symbol of the unsightly. A folktale tells the story of a frog prince who finally regains his human identity. One day a princess is moved by a sacrifice from the toad and kisses it. This act returns the animal to its original state, that of a handsome Prince Charming, who had been the victim of a spell.

calming the represented by a marble statue in the Louvre Museum in Paris

Large-Scale Catch

he international demand for fish and shellfish has encouraged the use of highly efficient fishing vessels and techniques. The use of these vessels and techniques, however, has brought about increasing destruction of these resources and of the environment. Every year, fishing nets kill more than 300,000 whales, dolphins, and porpoises worldwide. The greatest threat facing many species is to become enmeshed in the nets.

Traditional Fishing

Traditional fishing is a widespread, small-scale activity practiced directly by fishermen using selective fishing techniques. Such harvesting of fish and shellfish is carried out with equipment such as harpoons, hand nets, fishing rods, and fish traps. The vessels may include anything from pirogues to small motorboats.

Local vessels fish in surface waters. The fish they catch are usually sold in the surrounding area.

billion dollars THE RECORD AMOUNT OF MONEY EARNED BY THE FISHING INDUSTRY

Algae supply Collected as food or fertilizer, algae also provide the vegetable gelatin used to make ice cream and toothpaste.

Stone traps strand schools of small fish when the tide goes out.

> **Raking cockles** Cockles and other shellfish can be gathered at low tide by raking the sand.

Net traps are a series of cone-shaped nets with a cylinder at one end. They trap fish that swim with the curr

Commercial **Species**

Of the 20,000 known species of fish, only 300 are targeted for catching. Six of these represent half of the total catch

HERRING

SARDINE

MACKEREL

ANCHOVY

COD

Commercial Fishing

Commercial fishing fleets use advanced technology to detect schools of fish, and they use enormous nets of three types: mesh nets, dragnets, and sweep nets. Fish species that are not used for human consumption are also targeted commercially.

Purse seines, or surrounding nets hang from floats and are dragged in a circle around a school of fish. Then they are closed at the bottom. These nets are ideal for catching surface species such as tuna and sardines.

Trawl nets consist of a cone-shaped body are gathered. These nets are

1.24 miles

(2 km)

Fishing boat with a purse seine

> **Bag net** This net is used to catch lobsters, shellfish, and fish. The opening is designed so that the animal can enter the net easily but cannot get out.

Gill nets hang below the sea surface like curtains, moving to the rhythm of the tides. Besides capturing fish, though, they attract and catch many sea mammals and aquatic birds, which then die.

closed by a sack in which the fish maneuvered from one or two ships.

Overfishing

The fishing industry is an important source of food and employment around the world, and it provides the world's population with 16 percent of all animal protein consumed. However, environmental pollution, climate change, and irresponsible fishing practices are taking their toll on the planet's marine resources.

China Norway Thailand United Denmark Canada

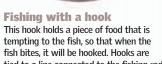
3,000-

2.000

Lures, Flies, and Bait

o spot, watch, cast the bait, and catch the fish. Humans and fish, face to face in hand-to-hand combat. Every fisherman or fisherwoman is a hunter, and knowledge of the prey is the basis of success. To catch fish, it is necessary to know their habits and preferences. Fishing methods, from fly-fishing to the use of cutting-edge technology, such as that used to catch tuna, depend on the area, the fish species, and available resources. Choosing the right morsel to tempt the fish (whether real or artificial bait) is another important decision. The key is to know which bait to use among the wide variety available and how to present it.

Where to Find Them


Knowing how fish breathe can be very useful for finding them. Arctic char, salmon, and most trout require well-oxygenated waters. They generally live in cold rivers at specific elevations, where the water is clear and clean.

Adipose fin, present only in the Salmonidae family

Fresh water

IS THE TYPE OF WATER WHERE MOST SPORTFISHING TAKES PLACE.

> The tail has many spots, and they clearly differentiate the rainbow trout from the common trout.

tied to a line connected to the fishing rod.

1 CASTING Once the fish is targeted, it only takes one or two tries for the animal to become suspicious.

9.8 inches (25 cm)

Rainbow Trout

Camouflaged

jacket to

avoid frightening

Waders allow

the fisherman

or fisherwoma

to approach

and make the

crucial cast.

the fish

2.7 inche (7 cm)

> **Oncorhynchus mykiss** The most popular species for sportfishing, this trout looks athletic and elegant, and it will attack anything that looks like food.

2 ACTION The fish has seen the fly. The fish turns toward the fly, and when it takes the lure, the fishing line must be reeled in quickly.

> COMBAT Once it has taken the lure, the trout begins to fight by diving and 'sprinting" at high speed.

Fins with white borders are characteristic of this species.

pounds (18 kg)

SIZES, FROM 3.5 OUNCES (100 G) TO 39 POUNDS (18 KG). They **hear** the lure.

SUCCESS DEPENDS ON BOTH THE LOOK AND THE SOUND OF THE LURE.

> Rainbow trout can be recognized by the red spot on the operculum bone.

> > Underwater this fish can be identified by its white throat

Fishing with floats Fishing with floats and bottom fishing fall in the category of lure casting. This is a static type of fishing-that is, once the lure is cast, one waits for the fish to bite.

Wild specimens

are thinner than

breeding farms

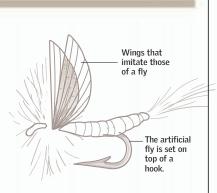
those in

Its tail is square-shaped and clearly forked

TROUT COME IN DIFFERENT

2.3 inches (6 cm)7.8 inches (20 cm)

Brook Trout


Salvelinus fontinalis

These fish are also known as speckled trout. When spawning season begins, they tend to form schools that travel as a group.

FISH AND AMPHIBIANS 87

Fishing with a fly, with a hook, with bait, and with lures. Every sportfishing species has its own challenges and thus demands distinct strategies.

Flv-fishing

is the most popular method among those fishing for rainbow trout. As the trout feed on surface insects, they are attracted by artificial flies that the fishermen cast.

Fishing with bait

These are natural baits placed on the hook for the fish to bite. The favorite baits for trout are fish eggs and worms, which are used with small sinkers tied to the fishing line.

Endangered Species

ndiscriminate hunting, overfishing, and pollution of the oceans have pushed many species to the brink of extinction. Sharks and rays are among the first marine lifeforms to be systematically studied, and 20 percent of their 547 species are in danger of disappearing. Slow-growing species are especially susceptible to excessive fishing.

Fish in Danger

The situation is especially critical for angel sharks (Squating squatina) and for the common, or blue, skate (Dipturus batis). The angel shark has now been declared extinct in the North Sea (after having been moved from "vulnerable" to "critically endangered" status), as has the common skate (which has been moved from "endangered" to "critically endangered"). The common skate is very scarce in the Irish Sea and in the southern part of the North Sea. As fishing operations have moved to deeper waters, the gulper shark (Centrophorus granulosus) has also suffered a substantial decline, and it is now in the "vulnerable" category.

HUMPHEAD WRASSE

Cheilinus undulatus

Status	Endangered
Cause	Pollution
Range	Pacific and Indian oceans

This fish lives in Indian Ocean coral reefs. A giant among reef fish, it can reach up to 7.5 feet (2.3 m) in length and can weigh as much as 420 pounds (190 kg). Its meat is prized for its flavor and texture. In many Eastern cultures, the humphead wrasse is considered highly valuable, and only the most privileged members of society can afford it.

PERSIAN

STURGEON

Acipenser persicus

Status	Endangered
Cause	Overfishing
Range	Caspian Sea

These fish swim upriver to spawn. Their eggs are highly desirable as caviar. This is one of five species of sturgeon caught wild in the Caspian Sea. It can reach a length of 26 feet (8 m) and can weigh as much as 1,760 pounds (800 kg).

Caus

Rang

Cheilinus undulatus

IS	Critically endangered
9	Overfishing
е	Mediterranean Sea and Black Se

This shark was once a common predator in the North Atlantic, the Mediterranean, and the Black Sea. In the Black Sea, overfishing is especially excessive. In the last 50 years, the angel shark's population has declined dramatically; it has been declared extinct in the North Sea and has disappeared from many areas of the Mediterranea

Cause

Range

BUTTERFLY FISH Chaetodon flavocoronatus

YELLOW-CROWNED

Vulnerable Pollution Guam

It lives only in Guam, in the western Pac and only in coral reefs, especially black coral From time to time this rare fish turns up on the aquarium market. In reality, little is known about the fish and its biology.

PYGMY SEAHORSE Hippocampus bargibanti

Endangered
Pollution
Caribbean Sea

Most seahorses are quite small, from the dwarf seahorse in the Gulf of Mexico, at 1 inch (2.5 cm), to the giant seahorse in the Pacific, at 13.7 inches (35 cm). In European waters, seahorses have an average length of 6 inches (15 cm). They use color as protection from the fish and fauna that share their habitat.

FISH AND AMPHIBIANS 89

WHALE SHARK Rhincodon typus

Endangered Indiscriminate fishing Warm seas

Although it is recognized as the largest fish in the world, little is known about the whale shark. It can grow to a length of nearly 60 feet (18 m), and it lives in warm seas all over the world. This fish takes some time to reproduce because females do not reach sexual maturity until they are 20 years of age.

COMMON SKATE Dipturus batis

Status	Vulnerable
Cause	Overfishing
Range	Eastern Atlantic

This fish can reach a length of 8 feet (2.5 m). It has disappeared from many areas of Europe, where it was once common. It is still fished commercially, however. The common skate's large size makes it easy to catch in nets. It lives in the eastern Atlantic, the western Mediterranean, and the western Baltic Sea.

Dramatic Decline

mphibians are considered by scientists to be the best natural indicators of an ecosystem's health. They are in a catastrophic decline: of all amphibian species, 7 percent are in critical condition, compared with 4 percent of mammals and 2 percent of birds. Of the 5,700 known species of amphibians, 168 have disappeared, and 1 species in 3 is in danger of suffering the same fate. Most of this decline—a phenomenon comparable in proportion to the disappearance of the dinosaurs—has taken place during the past 20 years.

Causes of Danger

The most important cause of the loss of species is the destruction of habitat through water and air pollution. Because most amphibians depend on fresh water to live, they suffer the effects of pollution before other forms of life. This makes them indicators of the condition of the environment. In America and Australia, scientists have identified a fungus that causes a disease called chytridiomycosis. This disease among frogs and toads has caused the amphibian population to decline by over 50 percent. This fungus advances 17.4 miles (28 km) per year and is lethal.

STA RICAN Atelopus varius

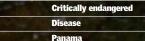
Status	Critically endangered
Cause	Pollution
Range	Costa Rica, Panama, and Colombia

This critically endangered species is highly sought after for its bright colors, which have led to its illegal hunting. At the same time, the toad's habitat is being destroyed by deforestation.

Statu

Ambystoma maculatum Endangered

Cause	Deforestation and pollut
Range	Eastern United States


Because of its forest habitat, urban growth and deforestation directly affect this salamander species, and so does environmental pollution. These are the factors that have brought about its endangered status.

Status

Cause

Range

This fish is critically endangered because its population has declined approximately 80 percent over the past three generations. This reduction is attributed to the fungus Batrachochytrium dendrobatidis, and it appears to be irreversible.

	and the second se
atus	Extinct
use	Pollution
nde	Costa Rica

The cause of the disappearance of this species is not yet known. There is speculation that the toad's extinction could have been caused by acid rain or by small variations in the environment.

OF SPECIES AR

Statu Cause Range

axolotl eggs.

Cause

Range

Atelopus peruensis

Critically endangered Infectious disease Peru

In the past 10 years, the population of this amphibian has declined by 80 percent. The species is now critically endangered. It seems that this animal is disappearing because of a fatal infectious disease that affects amphibians and that is caused by a fungus of the Chytridiomycota order.

Status	Critically endangered
Cause	Illegal trade
Range	Iran

This newt is endangered because the range of its habitat is less than 60 miles (100 km). The entire population of the species lives within an area of 4 square miles (10 sq km). Both the length and the quality of its life are declining, in addition to a decrease in the number of mature specimens because of the illegal pet trade.

NN ROCKET Colostethus dunni

Endangered Status Cause Chytridio Range Venezuela

This frog is considered critically endangered because of a drastic, 80 percent decline in its population in the past 10 years. The devastation of the species is attributed to chytridiomycosis.

COSTA RICAN VARIABLE HARLEQUIN TOAD Atelopus varius

Endangered Predation Mexico

The only natural habitat of the axolotl is Lake Xochimilco in the state of Puebla, Mexico, where it is very scarce. Foreign species such as koi and carassius, which were introduced by humans, prey on

Glossary

Abyssal Fish

Rare species that inhabit depths of 8,200 feet (2,500 m) and below, where no light reaches. They have peculiar shapes, with large heads and strong teeth for eating other fish, because no vegetation grows at those depths. They attract prey with lure organs consisting of photophores that shine in the darkness.

Actinopterygii (Ray-Finned Fish)

Class of fish distinguished mainly by having a skeleton with bony spines in the fins. They have a cartilaginous skull and only one pair of gill openings covered by an operculum.

Adipose Fin

Small, fleshy lobe located behind the dorsal fin in certain groups of bony fish (for example, in Salmoniformes).

Amphibians

Animals with a double life. The young live in the water, and the adults live on land. Many need to stay near water or in damp places to avoid drying out. This is because some species breathe mainly through their skin, which can absorb air only when damp.

Ampullae of Lorenzini

Organs in sharks for detecting signals emitted by potential prey.

Anadromous Fish

Fish that reproduce in fresh water and live in the ocean as adults. Salmon are one example.

Anaerobic

Breathing process that does not require oxygen.

Anal Fin

Unpaired fin located in the middle ventral part of the fish above the anus.

Anguilliformes

Fish with a long, slender body without appendages, including eels and morays.

Aquaculture

The raising of aquatic organisms, including fish, shellfish, crustaceans, plants, and seaweed. These organisms are usually used as food for humans or animals.

Barbel

Fleshy filament that grows from the lower jaw of certain fish, such as sturgeon, catfish, and cod.

Bathypelagic

Fish that live at ocean depths below the mesopelagic zone, where light cannot penetrate.

Batrachians

Another name for amphibians. It comes from Batrachia, an old name for the class Amphibia This nomenclature is considered out of date.

Benthic

Relating to the environment or habitat consisting of the ocean floor or of the organisms (benthos) that live buried in (endobenthic), on (epibenthic), or near the bottom

Benthopelagic

Relating to organisms that are found either on the ocean floor or in open water. Usually refers to fish and crustaceans of deepwater environments

Bioluminescence

Property of living beings that can produce light.

Bony Fish

Fish with bony skeletons and jaws. Their skeletons are relatively small but firm. They have flexible fins that allow precise control of their movements.

Bony Plates

Formations that grow from the skin and have a protective function for certain species. They usually cover the most sensitive parts of the fish, especially the head, although they can be found along the entire body, as in the case of the Placoderms.

Cartilaginous Fish

Fish with skeletons made of cartilage, such as the Elasmobranchii, a group that includes sharks and rays.

Caudal Fin

Unpaired fin at the lower end of the body, forming the tail fin in most fish.

Complete Metamorphosis

Phenomenon where the adult form of an animal looks nothing like the immature form; examples are frogs and toads.

Continental Shelf

Zone of the seafloor of variable dimensions, characterized by a slight slope and extending from the low tide mark to a depth of approximately 660 feet (200 m).

Ctenoid

Type of scale in which the free edge has spines.

Cvcloid

Type of scale in which the free edge is rounded.

Diphycercal

Type of tail in which the spinal column extends to the ends of the tail, and the fin is symmetrical above and below.

Diversity

Degree to which the total number of individual organisms in an ecosystem is distributed among different species. Minimum diversity is reached

when all the organisms belong to one species. Maximum diversity is reached in stable natural environments with a maximum variation in the substrate and environmental conditions.

Dorsal Fin

Unpaired fin located on the back, which keeps the fish in a stable position.

Eclosion

The moment when the embryo hatches from the eqg.

Electric Organs

Organs of some species, such as electric rays and electric eels, specially adapted to discharge electric current.

Epipelagic

Relating to organisms that live in open water away from the ocean floor, from the surface to depths of approximately 660 feet (200 m).

Estuary

A coastal body of water, partly closed but open to the ocean, where fresh water and salt water mix.

Exothermic

An organism that cannot regulate or maintain its own body temperature is said to be exothermic. The organism's internal temperature depends on the temperature of its environment.

External Fertilization

Fertilization of eggs that takes place outside the female's body. The male releases sperm over the eggs after the female deposits them. The eggs are exposed to the outer environment.

Filterers

Fish that have evolved to take in water and use filters in their mouth or gills to extract from it only the nutrients they need.

Fishhook

consisting of a small bar bent in the form of a hook and tied to a fishing line. Fishhooks have different shapes depending on the type of fish they are designed to catch. The hook also carries bait to attract the prev.

Flatfish

Fish that have adopted a flat shape and live on the seafloor. They have both eyes on the same side of the head, a twisted mouth, and pectoral fins on top of the body. The "blind" side of the fish is in contact with the seafloor. Sole is one type of flatfish.

Flying Fish

Exocoetids, or flying fish, are a family of 70 species of ocean fish in nine genera. They are found in all the oceans, especially in warm subtropical and tropical waters. Their most notable characteristic is their unusually large pectoral fins, which enable them to glide through the air for short distances.

Fossil

Remains or impressions of former living beings that are preserved from past geological ages.

Frv

Newly hatched fish whose shape resembles that of adults of the same species.

Ganoid

Type of scale made of shiny, enamel-like material (ganoin) formed in successive layers over compact bone. The extinct fish Palaeospondylus had this type of scale. The only modern fish with ganoid scales are gar, bowfin, and reedfish.

Gill Arch

Bone that anchors the gill filaments or spines.

Fishing implement, usually made of steel,

Gills

Organs that enable fish to breathe. They consist of filaments connected to the gill arches. The fish's blood is oxygenated in the gills and circulates to the rest of the body.

Gonophore

Anal fin transformed into a reproductive organ.

Grazers

Group of fish that nibble on undersea vegetation or coral.

Habitat

Living space in which a species finds the ecological conditions necessary for it to reside and reproduce.

Harpoon

Iron bar with an arrowhead at one end, often used to hunt sharks, whales, seabream, brown meagre, and other species.

Herbivore

Animal that feeds exclusively on plants.

Heterocercal

Type of tail fin in which the spine curves upward, forming an upper lobe of larger size.

Homocercal

Apparently symmetrical tail fin typical of teleost fish. It is not an extension of the spine.

Ichthyology

Branch of zoology concerned with the study of fish, including their anatomy, physiology, behavior, etc.

Industrial Fishing

Process for catching large quantities of fish from the sea for sale on the international or local market.

Internal Fertilization

Fertilization of cartilaginous fish, aided by the male's copulating organ. These organs, called claspers, developed from modifications of the pelvic fins.

Keel

Ridge or fleshy border along the sides of the caudal peduncle.

Larva

Immature but separate life-form, guite different from the adult.

Lateral Line

Line along the sides of the fish's body consisting of a series of pores.

Luminous Organs

Most fish in the ocean depths have bioluminescent organs that shine in the darkness and are used to attract prey or to communicate.

Lungfish

Fish that appeared in the Mesozoic Era, 250 million years ago. Like amphibians, these species breathe with lungs and are considered living fossils. Only three species have survived to the present.

Lure

Fixed or articulate lures are used in fishing to imitate small fish that are the prey of larger predatory fish.

Mesopelagic

Relating to organisms that live in the ocean depths, where light is dim. The mesopelagic zone is intermediate between the upper or euphotic (well-lit) zone and the lower or aphotic (lightless) zone.

Metamorphosis

Drastic change in the shape and behavior of an animal, usually during growth from an immature phase to maturity.

Migration

Travel (vertically in depth, horizontally toward the coast or along the coast) by schools of fish at more or less regular intervals (daily or seasonally), prompted by factors such as temperature, light, feeding, reproduction, etc.

Mimicry

Ability of certain organisms to modify their appearance to resemble elements of their habitat or other, better protected species, using camouflage to hide from their predators or prey.

Mouth Incubation

Mode of gestation for certain fish species that incubate the eggs inside their mouth and spit them into a burrow to feed. When the eggs hatch, the parent protects the young inside its mouth.

Multispecific Fishing

The harvesting of many species of fish and shellfish, with no particular species considered more important than the rest. This type of fishing is done in tropical and subtropical waters.

Oceanic

Region of open water beyond the edge of the continental shelf or island coasts.

Operculum

Gill cover of bony fish.

Osteichthyes

Class of fish that includes all bony fish, characterized by a highly ossified skeleton. This is contrasted with the class Chondrichthyes, including fish with cartilaginous skeletons (rays, skates, chimaeras, and sharks).

Ovoviviparous

Describing prenatal development of the young within the egg capsule, which is stored inside the female's body.

Parasite

Organism that feeds on organic substances of another living being or host, with which it lives in temporary or permanent contact, either within the host's body (endoparasite) or outside of the host's body (ectoparasite). Such an organism can cause sickness in the host.

Pectoral Fin

Paired fins located in the thoracic region, behind the gill openings.

Peduncle

Structure that acts as a support. In fish, it is a part of the fish's body located between the tail fin and the anal fin.

Pelagic

Relating to organisms that live at or near the ocean's surface.

Photophore

Mucous glands modified for the production of light. The light can come from symbiotic phosphorescent bacteria or from oxidation processes within the tissues.

Phytoplankton

Microscopic plants, of great importance as the basic link in most underwater food chains.

Placoid

Scales typical of cartilaginous fish and other ancient species. These scales are made of pulp, dentine, and enamel like that found in teeth, and they have a small protrusion. They are usually very small and point outward.

Plankton

Group of floating aquatic microorganisms, passively moved by winds, currents, and waves.

Port

Area along the coast, sheltered by natural or artificial means, where ships dock and carry on their operations.

Predator

Species that captures other species to feed on them.

Rav

In fish, bony structures that support the fins.

Reef

Hard bank that barely reaches above the ocean surface or that lies in very shallow waters. It can pose a danger for navigation. It can be inorganic in nature or result from the growth of coral.

Sarcopterygii

Another name for the Choanichthyes, a subclass of bony fish. Their fins are joined to the body by fleshy lobes, and those of the lungfish resemble filaments.

Scales

Small bony plates that grow from the skin and overlap each other.

School

Transient grouping of fish of the same population or species, brought together by similar behavior.

Shipvard

Place where small and large watercraft are built and repaired.

Simple Metamorphosis

Process in which the general appearance of an animal remains similar, although some organs atrophy and others develop.

Spawning

Action of producing or laying eggs.

Spines

Bony rays that support certain fins.

Spiracle

Gill openings between the jaw and hyoid arch. These are highly developed in fish of the class Chondrvichthes and in a few groups of primitive fish. Their main function is to eliminate excess water optimizing water flow into the gill slits. Spiracles are especially important to rays when on the seafloor because the spiracle is where the water enters their gills.

Spoon

In fishing, a metallic lure trimmed with hooks. As the fisher reels in the line, the sinker bobs in the water like a dying fish to attract a larger fish and tempt it to bite the bait.

Sportfishing

Sport of catching fish by hand. In most cases the fish, once caught, is returned to the sea or river.

Stinger

Sharp point that grows from the skin. The order Rajiformes includes two families that have poisonous stingers on the final one third of their tail. The stinger is extremely sharp and has serrated edges.

Sucker

Structure formed from the pectoral and pelvic fins to generate pressure and stick to a surface. It can also be a modification of the anterior dorsal fin, the pelvic fin, or the buccal (mouth) disk of the cyclostomes.

Swim Bladder

A sac located in the anterior dorsal region of the intestine that contains gas. Its function is to enable the animal to maintain buoyancy. This structure evolved as a lung, and, in some fish, it retains its breathing function.

Symbiosis

Biological partnership established between two or more individuals (plants or animals) to obtain mutual benefits

Tetrapod

Animal with two pairs of limbs, each of which ends in five fingers or toes.

Ventral Fin

Paired fins located on the abdomen.

Zooplankton

Microscopic larvae of crustaceans, fish, and other sea animals.

Index

A

abyssal fish, 54-55 abyssopelagic zone, 51 Acanthostega (fossil), 63 actinopterygian fish, 12 African butterfly fish, 47 African lungfish, 23 amphibian, 60-79 anatomy, 64 camouflage, 5 classification, 65 evolution, 62-63 feeding technique, 65 jumping, 66-67 metamorphosis, 70-71 mimicry, 5 mythology, 82-83 poisonous, 60-61, 72-73 reproduction, 68-69 species decline, 90-91 temperature regulation, 5 vocal sacs, 64 See also individual types amplexus, 68 ampullae of Lorenzini, 14, 44 Andean mythology, 82 angelfish, 29 Emperor angelfish, 26 angelshark species decline, 88 anglerfish humpback anglerfish, 55 Anguilliformes: See eel Anura (amphibian), 65, 66-67, 70-71 Apoda (amphibian), 65 archerfish, 46 Arthrodira (fossil), 9 Asian tree toad, 66 Atlantic footballfish, 55 Atlantic mackerel, 10-11 Atlantic mudskipper, 59 axolotl, 74-75 Mayan mythology, 82

species decline, 91 Aztec mythology, 75

bait fishing, 86-87 barbel, 31 bathypelagic zone, 51 black-striped pipefish, 40 blue poison dart frog, 73 blue ribbon eel, 57 bluespotted ribbontail ray, 42-43 bony fish, 10, 12-13 anatomy, 16-17 bottom feeder, 51 Boulter net. 85 brook trout, 87 brown trout, 16-17 bull shark, 45 butterfly fish African butterfly fish, 47 threadfin butterfly fish, 27 yellow-crowned butterfly fish, 88 butterfly ray, 43

(

caecilian ringed caecilian, 65 camouflage, 18-19, 34-35, 40 cartilaginous fish, 14-15 catfish, 31 upside-down catfish, 24 catshark, 25 Chimaerae (fish), 15 Chinese mythology, 83 Chinook salmon, 4-5 Choanichthyes (fish), 11, 13 Chocó Indians, 72 Chondrichthyes (fish), 14, 16 Christian symbolism, 82

chytridiomycosis, 90 clown coris, 29 clown knifefish. 29 clown triggerfish, 27 clownfish, 26 coelacanth. 11, 13 coloration amphibians, 72-73, 79 fish. 26-27 commensalism, 30 commercial fishing, 84-85 common salamander, 76-77 common skate overfishing, 89 common toad, 65 conger, 56 coral, 30, 50 Costa Rican variable harlequin toad, 73, 91 cowfish longhorn cowfish, 28 Craugastor tabasarae (fish), 90 crocodile fish fins, 6-7 ctenoid scale, 21 cycloid scale, 21 Cyclostomata (jawless fish), 16

D

damselfish whitetail damselfish, 27 deepwater fish, 15 defense mechanism, 36-37 seahorses, 40 Dendrobates, 61 Devonian Period Dunkleosteus, 9 evolution, 8-9 Pteraspis, 8 diphyceral tail, 23 diving equipment, 50-51 dragnet, 85 dragonet Mandarin dragonet, 27 dragonfish, 55 Dunkleosteus (fossil), 9 Dunn rocket frog species decline, 91 dwarf seahorse, 89

E

Eastern newt, 78 ecosystem, ocean, 50-51 edible frog, 66-67, 71 eel, 56 blue ribbon eel. 57 garden eel, 37 Egyptian mythology, 83 electric ray, 43 Emperor angelfish, 26 endangered species, 88-89 See also species decline epipelagic zone, 50 European midwife toad, 69 European plaice, 34 **European tree frog**, 5 Eusthenopteron (fossil), 62 evolution amphibians, 62-63 fish. 5. 8-9 fish jawbone, 8 Exocoetidae: See flying fish eye abyssal fish, 55 fish, 16

F

fanfin seadevil, 54 fangtooth, 54 feeding strategy amphibians, 65, 66-67 conger, 57

fish. 46-47. 57 moray, 56 fertilization fish, 32-33 filter feeder, 30 fin. 22-23 fin ray, 22-23 fire goby, 28 fish, 6-59 abyssal, 51, 54-55 age determination, 21 air breathing, 58-59 amphibious, 58-59 anatomy, 10-11, 16-17 Andean mythology, 82 Arthrodira, 9 body shape, 16-17, 28bottom feeders, 51 camouflage, 18-19, 34color, 26-27 deep-water, 51, 54-55 defense mechanisms, 3 diversity, 38-59 Dunkleosteus, 9 endangered species, 88 evolution, 5, 8-9 feeding strategies, 46fins, 22-23 food sources. 30-31 general characteristics. gills, 10-11, 17 life cycle, 32-33 lobe-finned, 62 movement, 24-25 mythology, 82-83 poisonous, 52-53 predators, 30 reproduction, 32-33, 41 salinity regulation, 17 scales, 20-21 schools, 25 self-defense, 36-37 skeleton, 12-13 species by ocean depth swimming, 24-25

	tails, 22-23
	vision, 18-19, 46
	See also individual types
	fishing industry
	species decline, 85
	sports fishing, 86-87
	Vietnam, 4-5
	fly fishing, 86
	flying fish, 35
	fossil
	amphibians, 62-63
	fish, 8-9
	living: See lungfish
	freshwater fish
	salinity regulation, 17
	frog , 64-65
29	edible, 66-67, 71
0.5	European tree frog, 5
-35	Iberian water frog, 68
	movement, 66-67
× 07	poisonous, 60-61, 72-73
6-37	reed frog, 65
	See also toad
	frog prince (folk tale), 83
3-89	fugu (pufferfish), 53
	fumarole, 55
47, 57	
	\mathbf{C}
, 6-7	
, 0-7	\sim
	ganoid scale, 21
	garden eel, 37
	gestational period, 77
	gill breathing, 10-11
	gliding, 35
	globefish , 18-19
1, 48-49	gnathostomad fish, 9
	goby
	fire goby, 28
	golden poison dart frog, 73
	golden toad
	species decline, 90
ı, 50-51	goldfish, 22-23, 27
	grazing, 31
	-

great crested newt, 78-79 great white shark, 24, 44-45 Greek mythology, 83 green and black poison dart frog, 73 green moray, 56 grouper humpback grouper, 26

н

handfish, red, 28 harleguin toad Costa Rican variable harlequin toad, 73, 91 harlequin tuskfish, 27 hatchetfish, 47 hawkfish longnose hawkfish, 29 heterocercal tail, 22 hibernation, 58 homocercal tail, 22 human impact, 80-81 fishing industry, 84-85 species decline, 90-91 sport fishing, 86-87 humpback anglerfish, 55 humpback grouper, 26 humphead wrasse, 88 hydrostatic pressure, 55

Iberian water frog, 68 Ichtyostega (fossil), 62-63 illuminated netdevil, 55 incubation axolotl, 74 fish, 33, 41 Italian spectacled salamander, 77

J-K

jawbone evolution, 8 jawfish vellow-headed jawfish, 33 jawless fish, 8 jumping, 64, 66-67 Kaiser's spotted newt species decline, 91 knifefish clown knifefish, 29

lamprey, 8, 11 anatomy, 16-17 sea lamprey, 11 large Alpine salamander, 77 leg evolution, 62 legend, 82-83 lemon shark, 45 life cycle amphibians, 68-69 axolotl, 74 fish, 32-33 salamanders, 77 lined seahorse, 40 lionfish, red, 52 little skate, 42 lobster bag net. 85 longhorn cowfish, 28 longnose hawkfish, 29 luna lung-like sacs, 5 lungfish, 8, 58-59 African, 23 Queensland lungfish, 58 South American lungfish, 58 West African lungfish, 58 lure-casting, 87

М

mackerel Atlantic mackerel, 10-11 Mandarin dragonet, 27 manta ray, 14-15, 42-43 mantella frog, 72, 73 marbled newt, 78-79 marbled salamander. 72 Mariana Trench, 55 marine lamprey, 8 Mayan mythology, 82 mesh net, 85 mesopelagic zone, 51 metamorphosis, 70-71 midwife toad European midwife toad, 69 mimesis, 34 mimicry amphibian, 5 moray green moray, 56 snowflake moray, 57 mudskipper, 59 Atlantic mudskipper, 59 mythology, 75, 82-83

neoteny, 74 newt, 78-79 Eastern newt, 78 great crested newt, 78-79 habitat destruction, 90 marbled newt, 78-79 palmate newt, 79 smooth newt, 79

ocean, 50-51 ocean sunfish, 13 Ocellaris clownfish, 26 ogrefish: See fangtooth operculum, 34 Osteichthyes: See bony fish

P-Q

Pacific red salmon, 48 palmate newt, 79 parasitism, 30 parrotfish, 31 Percula clownfish, 26 Persian sturgeon, 88 Peru stubfoot toad species decline, 91 pharyngeal plate, 31 phytoplankton, 30 pipefish black-striped pipefish, 40 seaweed pipefish, 28 piranha, 30 placoderm (fossil), 9 placoid scale, 20 plaice, European, 34 poison (toxin) amphibians, 60, 72-73, 78-79 fish, 42, 52-53 poison dart frog, 72 blue poison dart frog, 73 golden poison dart frog, 73 green and black poison dart frog, 73 yellow-banded poison dart frog, 73 pollution species decline, 90 porcupinefish spot-fin porcupinefish, 36-37 predator fish, 30 prickly leatherjacket, 28

Pteraspis (fossil), 8 pufferfish: See fugu pygmy seahorse, 89 Queensland lungfish, 58

R

rainbow trout, 86-87 Rajiformes, 42: See also ray ray, 11, 14-15 anatomy, 42-43 bluespotted ribbontail ray, 42-43 butterfly ray, 43 electric ray, 43 excessive fishing, 88, 89 manta ray, 14-15, 42-43 movement, 42 rough ray, 42 thornback ray, 14, 43 red handfish, 28 red lionfish, 52 red salmon, 48 reed frog, 65 regeneration axolotl, 75 remora, 30 reproduction amphibians, 68-69 axolotl, 74 fish, 32-33 newts, 78 salamanders, 77 salmon, 32, 48-49 seahorses, 41 respiratory system amphibians, 64 fish, 10-11 reticulated arrow-poison frog, 72 ringed caecilian, 65 rough ray, 42

sailfish, 24
salamander, 65, 76-77
common salamander, 76-77
habitat destruction, 90-91
Italian spectacled salamander, 77
large Alpine salamander, 77
marbled salamander, 72
poisonous glands, 72-73
spotted salamander, 90
tiger salamander, 65
See also axolotl
salmon
Chinook salmon, 4-5
fins, 23
fishing, 81
navigational ability, 5
Pacific red salmon, 48
reproduction, 32, 48-49
Yukon River, 5
saltwater fish
salinity regulation, 17
Sarcopterygii: See Choanichthyes
sawfish, 43
scale (anatomy), 20-21
defense mechanism, 36-37
school (of fish), 25
scorpionfish, 53
spotted scorpionfish, 29, 35, 52
sea dragon
weedy sea dragon, 40
sea lamprey, 11
seadevil, fanfin, 54
seahorse, 40-41
dwarf seahorse, 89
lined seahorse, 40
pygmy seahorse, 89
species decline, 89
seaweed pipefish, 28
self-defense
amphibians, 77
fish, 36-37
shark, 14, 38-39

anatomy, 16-17 attacks, 44-45 bull shark, 45 catshark, 24-25 excessive fishing, 88 great white shark, 44-45 lemon shark, 45 sense of smell, 14, 44 swimming, 24, 25 tail, 22 teeth, 45 whale shark, 30, 89 Shubin, Neil, 62 Siamese fighting fish, 22, 26 Silurian Period, 8 skate fish, 42 common skate, 89 Sloane's viperfish, 54 smooth newt, 79 snowflake moray, 57 sonar technology, 85 South American lungfish, 58 species decline, 88-91 sports fishing, 86-87 spot-fin porcupinefish, 36-37 spotted salamander, 90 spotted scorpionfish, 29, 35, 52 sturgeon feeding, 31 Persian, 88 sucker (anatomy), 30 suckerfish: See remora sunfish ocean sunfish, 13 Surinam toad, 69 swim bladder, 13 swimming most fish, 13, 24-25 rays, 42 seahorse, 40 symbiosis, 30

Γ

tadpole: See frog tail fin, 22-23 tetrapod, 62-63 thornback ray, 14, 43 threadfin butterfly fish, 27 tiger salamander, 65 Tiktaalik (fossil), 62 toad, 64-65 common toad, 65 Costa Rican variable harlequin toad, 73, 91 golden toad, 90 habitat destruction, 90-91 Mayan mythology, 82 movement, 66-67 Peru stubfoot toad, 91 poisonous, 72-73 reproduction, 68-69 Surinam toad, 69 See also frog toxin: See poison tree frog European tree frog, 5 white-lipped tree frog, 67 trident, 82 Trieste bathyscape, 51 triggerfish clown triggerfish, 27 trout brook trout, 87 brown trout, 16-17 rainbow trout, 86-87 tube-worm, tentacles, 55 tuskfish, harlequin, 27

upside-down catfish, 24 Urodela (amphibian), 65

V

venom: See poison Vietnam, 4-5 viperfish Sloane's viperfish, 54 vocal sac, 64 volcano, 51

W

weedy sea dragon, 40 West African lungfish, 58 whale shark, 30, 89 white-lipped tree frog, 67 whitetail damselfish, 27 wrasse, 26 humphead wrasse, 88

X-Z

Xochimilco, Lake (Mexico), 74 Xólotl, 75, 82 yellow-banded poison dart frog, 73 yellow-crowned butterflyfish, 88 yellow-headed jawfish, 33 yellow tang, 37 Yukon River (North America) salmon, 5 zooplankton, 30

FISH AND AMPHIBIANS Britannica Illustrated Science Library

